UK Biobank Built Environment Project - UKB Wales

MORPHOMETRIC ANALYSIS OF THE BUILT ENVIRONMENT IN UK BIOBANK: DATA ANALYSES AND SPECIFICATION MANUAL

Chinmoy Sarkar, John Gallacher, Chris Webster
Cardiff University
January 2014

1. INTRODUCTION

In the recent years, one of the primary emergent paradigms in the study of contextual health variations has been the influence of accessibility to health-promoting community resources upon an individual's health ${ }^{1}$. Accessibility in an urban activity space may be defined as the relative ease with which goods, services, activities and, generally destinations' or 'opportunities' can be reached from a given origin, essentially the dwelling location of an individual ${ }^{2}$. Several studies have highlighted the associations between health and access to health-promoting community resources, including: green spaces and recreational facilities ${ }^{3-7}$; retail ${ }^{8-12}$; transit stops ${ }^{13-15}$; supermarkets ${ }^{16-18}$; sports facilities ${ }^{19,20}$; community services ${ }^{21,22}$; and health care facilities ${ }^{23,24}$. Health effects of land use mix have also been highlighted ${ }^{10,25-27}$. Others have considered the health effects of street level physical accessibility ${ }^{28}$ as well as combination of land use and street level physical accessibility in an urban space ${ }^{29,30}$. Inhibitory health effects of specific land use destinations have also been studies, including fast food outlets ${ }^{31-33}$ the density of alcohol outlets ${ }^{34,35}$.

Nonetheless in most built environment - health studies, robustness and reliability of the strength and significance of associations are limited by small sample size and cross sectional design. Lack of prospective health and built environment datasets imply that the impacts of sustained exposures to the built environment cannot be predicted with a significant degree of certainty. Unravelling causality may further be impeded by selective migration, lack of statistical power, limited ability to adjust for confounding variables as well as the confusion between mediating versus confounding effects ${ }^{1,36,37}$. Large-scale prospective gene-environment studies provide the most practical solution to such methodological constraints. They have the ability to produce more reliable assessment of the health-impacts of sustained environmental exposures, both in terms of significant increments in explanatory power as well as causal inference ${ }^{38,39}$. The UK Biobank is such a flagship epidemiology program collecting prospective data on individual health, lifestyle and behavioural for half a million participants, aged 40-69 years and residing in any of the 21 major cities of UK ${ }^{40-42}$. The aim of the UK Biobank Built Environment project is objective assessment of the built environment (OABE) around the immediate neighbourhood of 500,000 participants of the UK Biobank cohort. This will result in the modelling, compilation and linkage of corresponding longitudinal spatial database of built environment with the UK Biobank health datasets. The large-scale automation of such detailed and precise measures of individual-level built environment morphological metrics (morphometrics) will have the potential to unravel the black box of causality, the pathways through which built environment in conjunction with the social and natural environment act as one of fundamental determinants of individual behaviour, physical and mental health. OABE of UK Biobank can thus
produce a comprehensive evidence-base on the impact of BE on lifestyle, behaviour and thereby health and hence, guide preventive intervention strategies as well as policy formulation.

2. BUILT ENVIRONMENT DATA SOURCE

2.1 UK Ordnance Survey dataset:

The Topography Layer and the Integrated Transport Network (ITN) Layer from the UK Ordnance Survey MasterMap (OSM) data as well as the UK Ordnance Survey Address Base Premium data constituted the base for the development of a series morphometrics. The OSM Topography Layer contains information on detailed surface features of the landscape categorized under nine themes (buildings, roads, tracks and paths, rail, water, terrain and height, heritage and antiques, structures and administrative boundaries). The Address Base Premium data provides the most detailed view of an address and its life cycle. It comprises of local authority, Ordnance Survey and Royal Mail addresses, current (approved) addresses, and alternatives for current addresses (reflecting differences in versions of addresses in current use), provisional addresses (proposed planning developments) and historic information for each address, where available, plus OWPAs and cross references to the OS MasterMap layer's TOIDs. The licence for the UK-wide Address Base Premium data procured from UK Ordnance survey comprised approximately 36 million valid address point features with an uncompressed file size of 29 GB. The component layers of the Address Base Premium data were joined together through the unique field - Unique Property Reference Number (UPRN). Thereafter, the geo-referenced grid coordinates; land use classifications and full address for each valid address points surveyed were extracted ${ }^{43,44}$. The same land use classification scheme as employed by the Ordnance Survey AddressBase Premium has been used in the present UK Biobank Built Environment project ${ }^{45}$. The polygon-based OSM Topography Layer and Address Base Premium were connected together through a spatial GIS queries. The OSM ITN Layer provides a topologically structured representation of the road network with respect to geometry of road links, road type (expressed in terms of motorway, A road, alleyway, etc.), junctions, grade separation, road names and numbers and information about the nature of road the link represents (for example single carriageway, dual carriageway or slip road). Geometric information consists of the length of the link as well as references to the node features at the ends of it. The OSM ITN Layer was subjected to network analysis techniques to evaluate the topological accessibility indices of the street network.

2.2 National Public Transport Access Nodes dataset:

Data on bus stops were obtained from the National Public Transport Access Nodes (NaPTAN) dataset ${ }^{46}$. NaPTAN forms a core component of the GB national transport information infrastructure
and is used by a number of other UK standards and information systems. Every GB station, coach terminus, airport, ferry terminal, bus stop, etc., is allocated at least one identifier code.

2.3 Digital Terrain Model data:

5-metre resolution digital terrain model licensed by Blue Sky was procured from LandMap Services of MIMAS at The University of Manchester (www.landmap.ac.uk/index.php/Datasets/BlueskyDTM/). The individual $100 \times 100 \mathrm{KM}^{2}$ image chunks were mosaicked together and the coverage of study areas of interest were extracted. This formed the basis for the analysis of terrain slope.

2.4 Ariel photographs:

0.5-metre resolution Colour Infrared Image (CIR) licensed by Blue Sky was procured from LandMap Services of MIMAS at The University of Manchester (www.landmap.ac.uk/index.php/Datasets/Colour-Infrared/) . The imaged were captured using one of two instruments Vexel UltraCams, and ADS40 from Leica Geosystems GIS \& Mapping, LLC. The individual 1X1 KM ${ }^{2}$ image chunks were mosaicked together and the coverage of study areas of interest were extracted. CIR captures the solar reflectance in three wavelength bands, namely red, green and near infrared bands of the electromagnetic spectrum. CIR was employed to calculate the index of greenery.

2.5 Area-level deprivation data:

Data on Welsh Index of Multiple Deprivation (WIMD) scores of 2008 and 2011 releases measured at the level of lower super output areas were downloaded from the STATWALES website (https://statswales.wales.gov.uk/Catalogue/Community-Safety-and-Social Inclusion/Welsh-Index-of-Multiple-Deprivation).

2.6 Building class data:

Cities Revealed building class dataset (version 6 for September 2012) comprising of information on residential dwelling types including the age of the dwelling and structural type was obtained in the form of $100 \times 100 \mathrm{KM}^{2}$ from LandMap Services of MIMAS at The University of Manchester http://www.landmap.ac.uk/index.php/Datasets/Building Class/Download-Building-Class-100km-x100 km .

3. GEOCODING INDIVIDUAL RESPONDENTS DWELLING ADDRESS

The UK Biobank Wales comprised of three assessment centres based in Cardiff, Swansea and Wrexham comprising of 20,816 active participants. The residential address of the participants were geocoded and X, Y coordinates were extracted by matching the Biobank address data with the UK Ordnance Survey address datasets. All spatial analyses in the study employed the British National Grid (i.e. OSBS1936) projection system. 96.81% of all Welsh Biobank addresses of participants from the three assessment centres could be geocoded by employing this process ($\mathrm{N}=20,152$).

Deliverable file 1:

File Name (size)	Description
Wales_UKB.csv (1.75 MB)	UK Biobank addresses file with geocoded and X, Y coordinates in British National Grid appended to it.

Table 1: Description of variables used

Column No.	Variable	Description
1	Encoded anonymised participant ID	Unique ID
2	Date of attending assessment centre	
3	UK Biobank assessment centre	UKB assessment centre
4	Address line 1	Address fields provided by UK Biobank
5	Address line 2	
6	Address line 3	
7	Address line 4	
8	Address line 5	
9	Postcode	
10	X_coordinate	Geocoded and X coordinate in British National Grid
11	Y_coordinate	Geocoded and Y coordinate in British National Grid

4. BUILT ENVIRONMENT MORPHOMETRICS CONSTRUCTION

The built environment was measured within a pre-defined street network catchment buffers around an UK Biobank participant's dwelling unit. The focus has been solely on objective measurements of built environment rather than on the individual's perceptual information.

4.1 Land Use Morphometrics

4.1.1 Land use density

Given the epidemiological evidence of a significant relationship between density of health promoting/inhibiting land uses and multiple health outcomes, density was measured within $0.5,1.0$, 1.5, 2.0 kilometre street network catchments of UK Biobank respondent's dwelling as well as within the lower super output areas in which they resided. ArcGIS 10.2 Network Analyst was used to create street network catchment areas were created around the geocoded residences of UK Biobank participants. The UK Office of National Statistics has defined Lower Super Output Areas (LSOAs) as relatively stable, compact geographical units with reasonable degrees of homogeneity in shape and social composition and an average population of 1600 persons for Wales. This was also considered as one of the five definitions of neighbourhood. The LSOA boundaries for the present analysis were downloaded from the Office of National Statistics website. The 20,152 UK Biobank participants were distributed across 760 LSOAs of Wales. Density of more than 200 categories of land uses were calculated through a series of GIS queries from the from the AddressBase Premium dataset as the number of features of a specific land use category within a pre-defined neighbourhood and expressed as number of features per square kilometre of neighbourhood.

Deliverable files 2a-2e:

File Name (size)	Description
Wales_UKB_LU_Density_LSOAs.csv (13.6 MB)	Density of land uses within LSOA in which the UK Biobank participant resides
Wales_UKB_LU_Density_Netbuf500m.csv (11.9 MB)	Density of land uses within 500 metres street catchment area from the UK Biobank participant's residence
Wales_UKB_LU_Density_Netbuf1000m.csv (15.2 MB)	Density of land uses within 1000 metres street catchment area from the UK Biobank participant's residence
Wales_UKB_LU_Density_Netbuf1500m.csv (18.2 MB)	Density of land uses within 1500 metres street catchment area from the UK Biobank participant's residence
Wales_UKB_LU_Density_Netbuf2000m.csv (20.8 MB)	Density of land uses within 2000 metres street catchment area from the UK Biobank participant's residence

Header file name:

Wales_UKB_LU_Density_Header.csv (2.67 KB)

Table 2: Description of variables used for calculation of land use density

Column No.	Variable	Component AddressBase Premium land use description ${ }^{45}$									
		Land use code	Class Desc.	Primary Code	Secondary Code	Tertiary Code	Quaternary Code	Primary Desc.	Secondary Desc.	Tertiary Desc.	Quaternary Desc.
1	Encoded anonymised participant ID	-	-	-	-	-	-	-	-	-	-
2	Buffer/LSOA area (sq Km)	-	-	-	-	-	-	-	-	-	-
3	Den_CA01	CA01	Farm / Non- Residential Associated Building	C	A	1		Commercial	Agricultural	Farm / Non-Residential Associated Building	
4	Den_CA02	CA02	Fishery	C	A	2		Commercial	Agricultural	Fishery	
		CA02FF	Fish Farming	C	A	2	FF	Commercial	Agricultural	Fishery	Fish Farming
		CA02FH	Fish Hatchery	C	A	2	FH	Commercial	Agricultural	Fishery	Fish Hatchery
		CA02FP	Fish Processing	C	A	2	FP	Commercial	Agricultural	Fishery	Fish Processing
		CA02OY	Oyster / Mussel Bed	C	A	2	OY	Commercial	Agricultural	Fishery	Oyster / Mussel Bed
5	Den_CA03	CA03	Horticulture	C	A	3		Commercial	Agricultural	Horticulture	
		CA03SH	Smallholding	C	A	3	SH	Commercial	Agricultural	Horticulture	Smallholding
		CA03VY	Vineyard	C	A	3	VY	Commercial	Agricultural	Horticulture	Vineyard
		CA03WB	Watercress Bed	C	A	3	WB	Commercial	Agricultural	Horticulture	Watercress Bed
6	Den_CA04	CAO4	Slaughter House / Abattoir	C	A	4		Commercial	Agricultural	Slaughter House / Abattoir	
7	Den_CB	CB	Ancillary Building	C	B			Commercial	Ancillary Building		
8	Den_CC	CC	Community Services	C	C			Commercial	Community Services		
9	Den_CCO2	CCO2	Law Court	C	C	2		Commercial	Community Services	Law Court	
	Den_ CCO3	CCO3	Prison	C	C	3		Commercial	Community Services	Prison	
		CCO3HD	HM Detention Centre	C	C	3	HD	Commercial	Community Services	Prison	HM Detention Centre
		CC03PR	HM Prison Service	C	C	3	PR	Commercial	Community Services	Prison	HM Prison Service

10		CC03SC	Secure Residential Accommodatio n	C	C	3	SC	Commercial	Community Services	Prison	Secure Residential Accommodation
11	Den_ CC04	CCO4	Public / Village Hall / Other Community Facility	C	C	4		Commercial	Community Services	Public / Village Hall / Other Community Facility	
		CCO4YR	Youth Recreational / Social Club	C	C	4	YR	Commercial	Community Services	Public / Village Hall / Other Community Facility	Youth Recreational / Social Club
12	Den_CC05	CC05	Public Convenience	C	C	5		Commercial	Community Services	Public Convenience	
13	Den_ CC06	CCO6	Cemetery / Crematorium / Graveyard. In Current Use.	C	C	6		Commercial	Community Services	Cemetery / Crematorium / Graveyard. In Current Use.	
		CC06CB	Columbarium	C	C	6	CB	Commercial	Community Services	Cemetery / Crematorium / Graveyard. In Current Use.	Columbarium
		CC06CR	Chapel Of Rest	C	C	6	CR	Commercial	Community Services	Cemetery / Crematorium / Graveyard. In Current Use.	Chapel Of Rest
		CC06CN	Crematorium	C	C	6	CN	Commercial	Community Services	Cemetery / Crematorium / Graveyard. In Current Use.	Crematorium
		CCO6CY	Cemetery	C	C	6	CY	Commercial	Community Services	Cemetery / Crematorium / Graveyard. In Current Use.	Cemetery
		CC06MC	Military Cemetery	C	C	6	MC	Commercial	Community Services	Cemetery / Crematorium / Graveyard. In Current Use.	Military Cemetery
		CC06MY	Mortuary	C	C	6	MY	Commercial	Community Services	Cemetery / Crematorium / Graveyard. In Current Use.	Mortuary
14	Den_CC07	CCO7	Church Hall / Religious Meeting Place / Hall	C	C	7		Commercial	Community Services	Church Hall / Religious Meeting Place / Hall	

15	Den_CC08	CC08	Community Service Centre / Office	C	C	8		Commercial	Community Services	Community Service Centre / Office	
16	Den_CC09	CCO9	Public Household Waste Recycling Centre (HWRC)	C	C	9		Commercial	Community Services	Public Household Waste Recycling Centre (HWRC)	
17	Den_CC10	CC10	Recycling Site	C	C	10		Commercial	Community Services	Recycling Site	
18	Den_CC11	CC11	CCTV	C	C	11		Commercial	Community Services	CCTV	
19	Den_CC12	CC12	Job Centre	C	C	12		Commercial	Community Services	Job Centre	
20	Den_CE	CE	Education	C	E			Commercial	Education		
21	Den_CE01	CE01	College	C	E	1		Commercial	Education	College	
22	Den_CE01FE	CE01FE	Further Education	C	E	1	FE	Commercial	Education	College	Further Education
23	Den_CE01HE	CE01HE	Higher Education	C	E	1	HE	Commercial	Education	College	Higher Education
24	Den_CE02	CEO2	Children's Nursery / Crèche	C	E	2		Commercial	Education	Children's Nursery / Crèche	
25	Den_CE03	CE03	Preparatory / First / Primary / Infant / Junior / Middle School	C	E	3		Commercial	Education	Preparatory / First / Primary / Infant / Junior / Middle School	
26	Den_CE03FS	CE03FS	First School	C	E	3	FS	Commercial	Education	$\begin{aligned} & \hline \text { Preparatory / First / } \\ & \text { Primary / Infant / Junior } \\ & \text { / Middle School } \\ & \hline \end{aligned}$	First School
27	Den_CEO3IS	CE03IS	Infant School	C	E	3	IS	Commercial	Education	Preparatory / First / Primary / Infant / Junior / Middle School	Infant School
28	Den_CE03JS	CE03JS	Junior School	C	E	3	JS	Commercial	Education	Preparatory / First / Primary / Infant / Junior / Middle School	Junior School
29	Den_CEO3NP	CE03NP	Non State Primary / Preparatory School	C	E	3	NP	Commercial	Education	Preparatory / First / Primary / Infant / Junior / Middle School	Non State Primary / Preparatory School
30	Den_CE03PS	CE03PS	Primary School	C	E	3	PS	Commercial	Education	$\begin{aligned} & \text { Preparatory / First / } \\ & \text { Primary / Infant / Junior } \\ & \text { / Middle School } \end{aligned}$	Primary School

31	Den_CE04	CE04	Secondary / High School	C	E	4		Commercial	Education	Secondary / High School	
32	Den_CE04SS	CE04SS	Secondary School	C	E	4	SS	Commercial	Education	Secondary / High School	Secondary School
33	Den_CE05	CE05	University	C	E	5		Commercial	Education	University	
34	Den_CE06	CE06	Special Needs Establishment.	C	E	6		Commercial	Education	Special Needs Establishment.	
35	Den_CE07	CE07	Other Educational Establishment	C	E	7		Commercial	Education	Other Educational Establishment	
36	Den_CH	CH	Hotel / Motel / Boarding / Guest House	C	H			Commercial	Hotel / Motel / Boarding / Guest House		
37	Den_ CH01	CHO1	Boarding / Guest House / Bed And Breakfast / Youth Hostel	C	H	1		Commercial	Hotel / Motel / Boarding / Guest House	Boarding / Guest House / Bed And Breakfast / Youth Hostel	
		CH01YH	Youth Hostel	C	H	1	YH	Commercial	Hotel / Motel / Boarding / Guest House	Boarding / Guest House / Bed And Breakfast / Youth Hostel	Youth Hostel
38	Den_CH02	CHO2	Holiday Let/Accomodati on/Short-Term Let Other Than CHO1	C	H	2		Commercial	Hotel / Motel / Boarding / Guest House	Holiday Let/Accomodation/Short -Term Let Other Than CHO1	
39	Den_CH03	CHO3	Hotel/Motel	C	H	3		Commercial	Hotel / Motel / Boarding / Guest House	Hotel/Motel	
		ClO 1	Factory/Manufa cturing	C	1	1		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	
40	Den_Cl01	CI01AW	Aircraft Works	C	1	1	AW	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Aircraft Works
		CIO1BB	Boat Building	C	1	1	BB	Commercial	Industrial Applicable	Factory/Manufacturing	Boat Building

	CIO1OR	Oil Refining	C	1	1	OR	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Oil Refining
	CIO1PG	Pottery Manufacturing	C	I	1	PG	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Pottery Manufacturing
	CI01PM	Paper Mill	C	1	1	PM	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Paper Mill
Den_Cl01	CIO1PW	Printing Works	C	1	1	PW	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Printing Works
	CIO1YD	Shipyard	C	I	1	YD	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Shipyard
	CIO1SR	Sugar Refinery	C	1	1	SR	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Sugar Refinery
	CIO1SW	Steel Works	C	1	1	SW	Commercial	Industrial Applicable to manufacturing, engineering,	Factory/Manufacturing	Steel Works

									maintenance, storage / wholesale distribution and extraction sites		
		CI01TL	Timber Mill	C	1	1	TL	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Timber Mill
	Den_C101	CIO1WN	Winery	C	।	1	WN	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Factory/Manufacturing	Winery
		ClO 2	Mineral / Ore Working / Quarry / Mine	C	1	2		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Mineral / Ore Working / Quarry / Mine	
41	Den_C102	CIO2MA	Mineral Mining / Active	C	1	2	MA	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Mineral / Ore Working / Quarry / Mine	Mineral Mining / Active
		CIO2MD	Mineral Distribution / Storage	C	।	2	MD	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Mineral / Ore Working / Quarry / Mine	Mineral Distribution / Storage
		CIO2MP	Mineral Processing	C	1	2	MP	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and	Mineral / Ore Working / Quarry / Mine	Mineral Processing

	Den_C102								extraction sites		
		CIO2OA	Oil / Gas Extraction / Active	C	1	2	OA	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Mineral / Ore Working / Quarry / Mine	Oil / Gas Extraction / Active
		CIO2QA	Mineral Quarrying / Open Extraction / Active	C	1	2	QA	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Mineral / Ore Working / Quarry / Mine	Mineral Quarrying / Open Extraction / Active
42	Den_Cl03	$\mathrm{ClO3}$	Workshop / Light Industrial	C	1	3		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Workshop / Light Industrial	
		CIO3GA	Servicing Garage	C	1	3	GA	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Workshop / Light Industrial	Servicing Garage
43	Den_CIO4	$\mathrm{ClO4}$	Warehouse / Store / Storage Depot	C	।	4		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Warehouse / Store / Storage Depot	
		CIO4CS	Crop Handling / Storage	C	1	4	CS	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Warehouse / Store / Storage Depot	Crop Handling / Storage
		CIO4PL	Postal Sorting / Distribution	C	1	4	PL	Commercial	Industrial Applicable to manufacturing,	Warehouse / Store / Storage Depot	Postal Sorting / Distribution

									engineering, maintenance, storage / wholesale distribution and extraction sites		
	Den_C104	CIO4SO	Solid Fuel Storage	C	1	4	SO	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Warehouse / Store / Storage Depot	Solid Fuel Storage
		CIO4TS	Timber Storage	C	1	4	TS	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Warehouse / Store / Storage Depot	Timber Storage
		$\mathrm{ClO5}$	Wholesale Distribution	C	।	5		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Wholesale Distribution	
44	Den_Cl05	CI05SF	Solid Fuel Distribution	C	।	5	SF	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Wholesale Distribution	Solid Fuel Distribution
		CI05TD	Timber Distribution	C	1	5	TD	Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Wholesale Distribution	Timber Distribution
45	Den_Cl06	Cl06	Recycling Plant	C	1	6		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale	Recycling Plant	

									distribution and extraction sites		
46	Den_CIO7	$\mathrm{ClO7}$	Incinerator / Waste Transfer Station	C	I	7		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Incinerator / Waste Transfer Station	
47	Den_Cl08	$\mathrm{ClO8}$	Maintenance Depot	C	1	8		Commercial	Industrial Applicable to manufacturing, engineering, maintenance, storage / wholesale distribution and extraction sites	Maintenance Depot	
		CL01	Amusements	C	L	1		Commercial	Leisure - Applicable to recreational sites and enterprises	Amusements	
48	Den_CLO1	CL01LP	Leisure Pier	C	L	1	LP	Commercial	Leisure - Applicable to recreational sites and enterprises	Amusements	Leisure Pier
		CLO2	Holiday / Campsite	C	L	2		Commercial	Leisure - Applicable to recreational sites and enterprises	Holiday / Campsite	
		CLO2CG	Camping	C	L	2	CG	Commercial	Leisure - Applicable to recreational sites and enterprises	Holiday / Campsite	Camping
49	Den_CLO2	CLO2CV	Caravanning	C	L	2	CV	Commercial	Leisure - Applicable to recreational sites and enterprises	Holiday / Campsite	Caravanning
		CLO2HA	Holiday Accommodatio n	C	L	2	HA	Commercial	Leisure - Applicable to recreational sites and enterprises	Holiday / Campsite	Holiday Accommodation
		CLO2HO	Holiday Centre	C	L	2	HO	Commercial	Leisure - Applicable to recreational sites and enterprises	Holiday / Campsite	Holiday Centre
		CLO2YC	Youth Organisation Camp	C	L	2	YC	Commercial	Leisure - Applicable to recreational sites and enterprises	Holiday / Campsite	Youth Organisation Camp
		CLO3	Library	C	L	3		Commercial	Leisure - Applicable to recreational sites and enterprises	Library	
50	Den_CLO3	CL03RR	Reading Room	C	L	3	RR	Commercial	Leisure - Applicable to recreational sites	Library	Reading Room

									and enterprises		
51	Den_CLO4	CLO4	Museum / Gallery	C	L	4		Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	
		CLO4AC	Art Centre / Gallery	C	L	4	AC	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Art Centre / Gallery
		CL04AM	Aviation Museum	C	L	4	AM	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Aviation Museum
		CL04HG	Heritage Centre	C	L	4	HG	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Heritage Centre
		CL04IM	Industrial Museum	C	L	4	IM	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Industrial Museum
		CL04MM	Military Museum	C	L	4	MM	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Military Museum
		CL04SM	Science Museum	C	L	4	SM	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Science Museum
		CL04TM	Transport Museum	C	L	4	TM	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Transport Museum
		CL04NM	Maritime Museum	C	L	4	NM	Commercial	Leisure - Applicable to recreational sites and enterprises	Museum / Gallery	Maritime Museum
52	Den_CL06	CL06	Indoor / Outdoor Leisure / Sporting Activity / Centre	C	L	6		Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	
53	Den_CL06BF	CL06BF	Bowls Facility	C	L	6	BF	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Bowls Facility
54	Den_CL06CK	CLO6CK	Cricket Facility	C	L	6	CK	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Cricket Facility
55	Den_CLO6DS	CL06DS	Diving / Swimming Facility	C	L	6	DS	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Diving / Swimming Facility
	Den_CL06EQ	CL06EQ	Equestrian Sports Facility	C	L	6	EQ	Commercial	Leisure - Applicable to recreational sites	Indoor / Outdoor Leisure / Sporting Activity /	Equestrian Sports Facility

56									and enterprises	Centre	
57	Den_CL06FB	CL06FB	Football Facility	C	L	6	FB	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Football Facility
58	Den_CL06GF	CL06GF	Golf Facility	C	L	6	GF	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Golf Facility
59	Den_CLO6LS	CL06LS	Activity / Leisure / Sports Centre	C	L	6	LS	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Activity / Leisure / Sports Centre
60	Den_CL06PF	CL06PF	Playing Field	C	L	6	PF	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Playing Field
61	Den_CL06QS	CL06QS	Racquet Sports Facility	C	L	6	QS	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Racquet Sports Facility
62	Den_CL06RF	CL06RF	Rugby Facility	C	L	6	RF	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Rugby Facility
63	Den_CL06RG	CL06RG	Recreation Ground	C	L	6	RG	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Recreation Ground
64	Den_CL06SK	CL06SK	Skateboarding Facility	C	L	6	SK	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Skateboarding Facility
65	Den_CL06TB	CL06TB	Tenpin Bowling Facility	C	L	6	TB	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Tenpin Bowling Facility
66	Den_CLO6WA	CL06WA	Water Sports Facility	C	L	6	WA	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Water Sports Facility
67	Den_CL06WP	CL06WP	Winter Sports Facility	C	L	6	WP	Commercial	Leisure - Applicable to recreational sites and enterprises	Indoor / Outdoor Leisure / Sporting Activity / Centre	Winter Sports Facility
68	Den_CLO7	CL07	Bingo Hall / Cinema / Conference / Exhibition Centre / Theatre / Concert Hall	C	L	7		Commercial	Leisure - Applicable to recreational sites and enterprises	Bingo Hall / Cinema / Conference / Exhibition Centre / Theatre / Concert Hall	
		CL07TH	Theatre	C	L	7	TH	Commercial	Leisure - Applicable to recreational sites and enterprises	Bingo Hall / Cinema / Conference / Exhibition Centre / Theatre /	Theatre

	Den_CL07									Concert Hall	
		CL07CI	Cinema	C	L	7	Cl	Commercial	Leisure - Applicable to recreational sites and enterprises	Bingo Hall / Cinema / Conference / Exhibition Centre / Theatre / Concert Hall	Cinema
		CL07EN	Entertainment Complex	C	L	7	EN	Commercial	Leisure - Applicable to recreational sites and enterprises	Bingo Hall / Cinema / Conference / Exhibition Centre / Theatre / Concert Hall	Entertainment Complex
		CLO7EX	Conference / Exhibition Centre	C	L	7	EX	Commercial	Leisure - Applicable to recreational sites and enterprises	Bingo Hall / Cinema / Conference / Exhibition Centre / Theatre / Concert Hall	Conference / Exhibition Centre
69	Den_CL08	CL08	Zoo / Theme Park	C	L	8		Commercial	Leisure - Applicable to recreational sites and enterprises	Zoo / Theme Park	
		CL08AK	Amusement Park	C	L	8	AK	Commercial	Leisure - Applicable to recreational sites and enterprises	Zoo / Theme Park	Amusement Park
		CL08MX	Model Village Site	C	L	8	MX	Commercial	Leisure - Applicable to recreational sites and enterprises	Zoo / Theme Park	Model Village Site
		CL08WZ	Wildlife / Zoological Park	C	L	8	WZ	Commercial	Leisure - Applicable to recreational sites and enterprises	Zoo / Theme Park	Wildlife / Zoological Park
		CL08AQ	Aquatic Attraction	C	L	8	AQ	Commercial	Leisure - Applicable to recreational sites and enterprises	Zoo / Theme Park	Aquatic Attraction
70	Den_CL09	CL09	Beach Hut (Recreational, Non-Residential Use Only)	C	L	9		Commercial	Leisure - Applicable to recreational sites and enterprises	Beach Hut (Recreational, Non-Residential Use Only)	
71	Den_ CL10	CL10	Licensed Private Members' Club	C	L	10		Commercial	Leisure - Applicable to recreational sites and enterprises	Licensed Private Members' Club	
		CL10RE	Recreational / Social Club	C	L	10	RE	Commercial	Leisure - Applicable to recreational sites and enterprises	Licensed Private Members' Club	Recreational / Social Club
72	Den_CL11	CL11	Arena / Stadium	C	L	11		Commercial	Leisure - Applicable to recreational sites and enterprises	Arena / Stadium	

		CL11SD	Stadium	C	L	11	SD	Commercial	Leisure - Applicable to recreational sites and enterprises	Arena / Stadium	Stadium
		CL11SJ	Showground	C	L	11	SJ	Commercial	Leisure - Applicable to recreational sites and enterprises	Arena / Stadium	Showground
73	Den_CM	CM	Medical	C	M			Commercial	Medical		
74	Den_CM01	CM01	Dentist	C	M	1		Commercial	Medical	Dentist	
75	Den_CM02	CM02	General Practice Surgery / Clinic	C	M	2		Commercial	Medical	General Practice Surgery / Clinic	
76	Den_CM02HL	CM02HL	Health Care Services	C	M	2	HL	Commercial	Medical	General Practice Surgery / Clinic	Health Care Services
77	Den_CM02HC	CM02HC	Health Centre	C	M	2	HC	Commercial	Medical	General Practice Surgery / Clinic	Health Centre
78	Den_CM03	CM03	Hospital / Hospice	C	M	3		Commercial	Medical	Hospital / Hospice	
79	Den_CM03HI	CM03HI	Hospice	C	M	3	HI	Commercial	Medical	Hospital / Hospice	Hospice
80	Den_CM03HP	CM03HP	Hospital	C	M	3	HP	Commercial	Medical	Hospital / Hospice	Hospital
81	Den_CM04	CM04	Medical / Testing / Research Laboratory	C	M	4		Commercial	Medical	Medical / Testing / Research Laboratory	
82	Den_ CM05	CM05	Professional Medical Service	C	M	5		Commercial	Medical	Professional Medical Service	
		CM05ZS	Assessment / Development Services	C	M	5	ZS	Commercial	Medical	Professional Medical Service	Assessment / Development Services
83	Den_CN	CN	Animal Centre	C	N			Commercial	Animal Centre		
84	Den_CN01	CNO1	Cattery / Kennel	C	N	1		Commercial	Animal Centre	Cattery / Kennel	
85	Den_ CNO2	CNO2	Animal Services	C	N	2		Commercial	Animal Centre	Animal Services	
		CNO2AX	Animal Quarantining	C	N	2	AX	Commercial	Animal Centre	Animal Services	Animal Quarantining
86	Den_ CN03	CNO3	Equestrian	C	N	3		Commercial	Animal Centre	Equestrian	
		CN03HB	Horse Racing / Breeding Stable	C	N	3	HB	Commercial	Animal Centre	Equestrian	Horse Racing / Breeding Stable
		CN03SB	Commercial Stabling /	C	N	3	SB	Commercial	Animal Centre	Equestrian	Commercial Stabling / Riding

			Riding								
87	Den_ CNO4	CNO4	Vet / Animal Medical Treatment	C	N	4		Commercial	Animal Centre	Vet / Animal Medical Treatment	
88	Den_ CN05	CNO5	Animal / Bird / Marine Sanctuary	C	N	5		Commercial	Animal Centre	Animal / Bird / Marine Sanctuary	
		CN05AN	Animal Sanctuary	C	N	5	AN	Commercial	Animal Centre	Animal / Bird / Marine Sanctuary	Animal Sanctuary
		CN05MR	Marine Sanctuary	C	N	5	MR	Commercial	Animal Centre	Animal / Bird / Marine Sanctuary	Marine Sanctuary
89	Den_ COO1	COO1	Office / Work Studio	C	0	1		Commercial	Office	Office / Work Studio	
		CO01EM	Embassy /, High Commission / Consulate	C	0	1	EM	Commercial	Office	Office / Work Studio	Embassy /, High Commission / Consulate
		CO01FM	Film Studio	C	0	1	FM	Commercial	Office	Office / Work Studio	Film Studio
		CO01GV	Central Government Service	C	0	1	GV	Commercial	Office	Office / Work Studio	Central Government Service
		C001LG	Local Government Service	C	0	1	LG	Commercial	Office	Office / Work Studio	Local Government Service
90	Den_COO2	COO2	Broadcasting (TV / Radio)	C	0	2		Commercial	Office	Broadcasting (TV / Radio)	
91	Den_ CR01	CRO1	Bank / Financial Service	C	R	1		Commercial	Retail	Bank / Financial Service	
92	Den_ CR02	CRO2	Retail Service Agent	C	R	2		Commercial	Retail	Retail Service Agent	
		CR02PO	Post Office	C	R	2	PO	Commercial	Retail	Retail Service Agent	Post Office
93	Den_ CR04	CR04	Market (Indoor / Outdoor)	C	R	4		Commercial	Retail	Market (Indoor / Outdoor)	
		CR04FK	Fish Market	C	R	4	FK	Commercial	Retail	Market (Indoor / Outdoor)	Fish Market
		CR04FV	Fruit / Vegetable Market	C	R	4	FV	Commercial	Retail	Market (Indoor / Outdoor)	Fruit / Vegetable Market
		CR04LV	Livestock Market	C	R	4	LV	Commercial	Retail	Market (Indoor / Outdoor)	Livestock Market
94	Den_ CR05	CR05	Petrol Filling Station	C	R	5		Commercial	Retail	Petrol Filling Station	
95	Den_CR06	CR06	Public House / Bar / Nightclub	C	R	6		Commercial	Retail	Public House / Bar / Nightclub	

96	Den_CR07	CR07	Restaurant / Cafeteria	C	R	7		Commercial	Retail	Restaurant / Cafeteria	
		CR08	Shop / Showroom	C	R	8		Commercial	Retail	Shop / Showroom	
97	Den_CR08	CR08GC	Garden Centre	C	R	8	GC	Commercial	Retail	Shop / Showroom	Garden Centre
98	Den_CR09	CR09	Other Licensed Premise / Vendor	C	R	9		Commercial	Retail	Other Licensed Premise / Vendor	
99	Den_CR10	CR10	Fast Food Outlet / Takeaway (Hot / Cold)	C	R	10		Commercial	Retail	Fast Food Outlet / Takeaway (Hot / Cold)	
100	Den_CR11	CR11	Automated Teller Machine (ATM)	C	R	11		Commercial	Retail	Automated Teller Machine (ATM)	
		CS	Storage Land	C	S			Commercial	Storage Land		
101	Den_CS	CSO1	General Storage Land	C	S	1		Commercial	Storage Land	General Storage Land	
		CSO2	Builders' Yard	C	S	2		Commercial	Storage Land	Builders' Yard	
102	Den_CT	CT	Transport	C	T			Commercial	Transport		
		CT01	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	C	T	1		Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	
		CT01AF	Airfield	C	T	1	AF	Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	Airfield
103	Den_CT01	CT01AY	Air Passenger Terminal	C	T	1	AY	Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	Air Passenger Terminal
		CT01AI	Air Transport Infrastructure Services	C	T	1	Al	Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	Air Transport Infrastructure Services
		CT01AP	Airport	C	T	1	AP	Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	Airport
		CT01HS	Helicopter Station	C	T	1	HS	Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	Helicopter Station

		CT01HT	Heliport/ Helipad	C	T	1	HT	Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	Heliport / Helipad
104	Den_CT02	CTO2	Bus Shelter	C	T	2		Commercial	Transport	Bus Shelter	
105	Den_CT03	CT03	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	C	T	3		Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	
		CT03PK	Public Park And Ride	C	T	3	PK	Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	Public Park And Ride
		CT03PP	Public Car Parking	C	T	3	PP	Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	Public Car Parking
		CT03PU	Public Coach Parking	C	T	3	PU	Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	Public Coach Parking
		CT03VP	Public Commercial Vehicle Parking	C	T	3	VP	Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	Public Commercial Vehicle Parking
106	Den_ CT04	CT04	Goods Freight Handling / Terminal	C	T	4		Commercial	Transport	Goods Freight Handling / Terminal	
		CT04AE	Air Freight Terminal	C	T	4	AE	Commercial	Transport	Goods Freight Handling / Terminal	Air Freight Terminal
		CT04CF	Container Freight	C	T	4	CF	Commercial	Transport	Goods Freight Handling / Terminal	Container Freight
		CT04RH	Road Freight Transport	C	T	4	RH	Commercial	Transport	Goods Freight Handling / Terminal	Road Freight Transport
		CT04RT	Rail Freight Transport	C	T	4	RT	Commercial	Transport	Goods Freight Handling / Terminal	Rail Freight Transport
107	Den_CT05	CT05	Marina	C	T	5		Commercial	Transport	Marina	
108	Den_CT06	CT06	Mooring	C	T	6		Commercial	Transport	Mooring	
109	Den_CT07	СT07	Railway Asset	C	T	7		Commercial	Transport	Railway Asset	
	Den_CT08	СT08	Station /	C	T	8		Commercial	Transport	Station / Interchange /	

110			Interchange / Terminal / Halt							Terminal / Halt	
		CT08BC	Bus / Coach Station	C	T	8	BC	Commercial	Transport	Station / Interchange / Terminal / Halt	Bus / Coach Station
		CT08RS	Railway Station	C	T	8	RS	Commercial	Transport	Station / Interchange / Terminal / Halt	Railway Station
		CT08VH	Vehicular Rail Terminal	C	T	8	VH	Commercial	Transport	Station / Interchange / Terminal / Halt	Vehicular Rail Terminal
111	Den_ CT09	CT09	Transport Track / Way	C	T	9		Commercial	Transport	Transport Track / Way	
		CT09CL	Cliff Railway	C	T	9	CL	Commercial	Transport	Transport Track / Way	Cliff Railway
		CT09CX	Chair Lift / Cable Car / Ski Tow	C	T	9	CX	Commercial	Transport	Transport Track / Way	Chair Lift / Cable Car / Ski Tow
		сто9мо	Monorail	C	T	9	MO	Commercial	Transport	Transport Track / Way	Monorail
112	Den_ CT10	CT10	Vehicle Storage	C	T	10		Commercial	Transport	Vehicle Storage	
		CT10BG	Boat Storage	C	T	10	BG	Commercial	Transport	Vehicle Storage	Boat Storage
		CT10BU	Bus / Coach Depot	C	T	10	BU	Commercial	Transport	Vehicle Storage	Bus / Coach Depot
113	Den_ CT11	CT11	Transport Related Infrastructure	C	T	11		Commercial	Transport	Transport Related Infrastructure	
		CT11AD	Aqueduct	C	T	11	AD	Commercial	Transport	Transport Related Infrastructure	Aqueduct
		CT11LK	Lock	C	T	11	LK	Commercial	Transport	Transport Related Infrastructure	Lock
		CT11WE	Weir	C	T	11	WE	Commercial	Transport	Transport Related Infrastructure	Weir
		CT11WG	Weighbridge / Load Gauge	C	T	11	WG	Commercial	Transport	Transport Related Infrastructure	Weighbridge / Load Gauge
114	Den_CT12	CT12	Overnight Lorry Park	C	T	12		Commercial	Transport	Overnight Lorry Park	
115	Den_CU	CU	Utility	C	U			Commercial	Utility		
116	Den_CU01	CU01	Electricity SubStation	C	U	1		Commercial	Utility	Electricity Sub-Station	
117	Den_CU02	CU02	Landfill	C	U	2		Commercial	Utility	Landfill	
		CU03	Power Station / Energy Production	C	U	3		Commercial	Utility	Power Station / Energy Production	
	Den_CU03	CU03ED	Electricity Distribution	C	U	3	ED	Commercial	Utility	Power Station / Energy Production	Electricity Distribution

118			Facility								Facility
		CU03EP	Electricity Production Facility	C	U	3	EP	Commercial	Utility	Power Station / Energy Production	Electricity Production Facility
		CU03WF	Wind Farm	C	U	3	WF	Commercial	Utility	Power Station / Energy Production	Wind Farm
		CU03WU	Wind Turbine	C	U	3	WU	Commercial	Utility	Power Station / Energy Production	Wind Turbine
119	Den_CU04	CU04	Pump House / Pumping Station / Water Tower	C	U	4		Commercial	Utility	Pump House / Pumping Station / Water Tower	
		CU04WC	Water Controlling / Pumping	C	U	4	WC	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Controlling / Pumping
		CU04WD	Water Distribution / Pumping	C	U	4	WD	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Distribution / Pumping
		$\begin{aligned} & \text { CU04W } \\ & \mathrm{M} \\ & \hline \end{aligned}$	Water Quality Monitoring	C	U	4	WM	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Quality Monitoring
		CU04WS	Water Storage	C	U	4	WS	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Storage
		$\begin{aligned} & \text { CU04W } \\ & \text { W } \end{aligned}$	Waste Water Distribution / Pumping	C	U	4	WW	Commercial	Utility	Pump House / Pumping Station / Water Tower	Waste Water Distribution / Pumping
120	Den_CU06	CU06	Telecommunica tion	C	U	6		Commercial	Utility	Telecommunication	
		CU06TE	Telecommunica tions Mast	C	U	6	TE	Commercial	Utility	Telecommunication	Telecommunicati ons Mast
		CU06TX	Telephone Exchange	C	U	6	TX	Commercial	Utility	Telecommunication	Telephone Exchange
121	Den_CU07	CU07	Water / Waste Water / Sewage Treatment Works	C	U	7		Commercial	Utility	Water / Waste Water / Sewage Treatment Works	
		CU07WR	Waste Water Treatment	C	U	7	WR	Commercial	Utility	Water / Waste Water / Sewage Treatment Works	Waste Water Treatment
		CU07WT	Water Treatment	C	U	7	WT	Commercial	Utility	Water / Waste Water / Sewage Treatment Works	Water Treatment
	Den_CU09	CU09	Other Utility Use	C	U	9		Commercial	Utility	Other Utility Use	
		CU090V	Observatory	C	U	9	OV	Commercial	Utility	Other Utility Use	Observatory

122		CU09RA	Radar Station	C	U	9	RA	Commercial	Utility	Other Utility Use	Radar Station
		CU09SE	Satellite Earth Station	C	U	9	SE	Commercial	Utility	Other Utility Use	Satellite Earth Station
		CU09CQ	Cable Terminal Station	C	U	9	CQ	Commercial	Utility	Other Utility Use	Cable Terminal Station
123	Den_CU10	CU10	Waste Management	C	U	10		Commercial	Utility	Waste Management	
124	Den_ CU11	CU11	Telephone Box	C	U	11		Commercial	Utility	Telephone Box	
		CU11OP	Other Public Telephones	C	U	11	OP	Commercial	Utility	Telephone Box	Other Public Telephones
		CU12	Dam	C	U	12		Commercial	Utility	Dam	
125	Den_CX	CX	Emergency / Rescue Service	C	X			Commercial	Emergency / Rescue Service		
126	Den_ CX01	CX01	Police / Transport Police / Station	C	X	1		Commercial	Emergency / Rescue Service	Police / Transport Police / Station	
		CX01PT	Police Training	C	X	1	PT	Commercial	Emergency / Rescue Service	Police / Transport Police / Station	Police Training
127	Den_ CX02	CX02	Fire Station	C	X	2		Commercial	Emergency / Rescue Service	Fire Station	
		CX02FT	Fire Service Training	C	X	2	FT	Commercial	Emergency / Rescue Service	Fire Station	Fire Service Training
128	Den_ CX02	CX03	Ambulance Station	C	X	3		Commercial	Emergency / Rescue Service	Ambulance Station	
		CX03AA	Air Sea Rescue / Air Ambulance	C	X	3	AA	Commercial	Emergency / Rescue Service	Ambulance Station	Air Sea Rescue / Air Ambulance
129	Den_ CX04	CX04	Lifeboat Services / Station	C	X	4		Commercial	Emergency / Rescue Service	Lifeboat Services / Station	
130	Den_CX05	CX05	Coastguard Rescue / Lookout / Station	C	X	5		Commercial	Emergency / Rescue Service	Coastguard Rescue / Lookout / Station	
131	Den_CX06	CX06	Mountain Rescue Station	C	X	6		Commercial	Emergency / Rescue Service	Mountain Rescue Station	
132	Den_CX08	CX08	Police Box/ Kiosk	C	X	8		Commercial	Emergency / Rescue Service	Police Box / Kiosk	
133	Den_CZ	CZ	Information	C	Z			Commercial	Information		
134	Den_CZ01	CZ01	Advertising Hoarding	C	Z	1		Commercial	Information	Advertising Hoarding	
	Den_CZ02	CZO2	Tourist Information	C	Z	2		Commercial	Information	Tourist Information Signage	

146	Den_LP02	LP02	Public Open Space / Nature Reserve	L	P	2		Land	Park	Public Open Space / Nature Reserve	
147	Den_LP03	LP03	Playground	L	P	3		Land	Park	Playground	
		LP03PA	Play Area	L	P	3	PA	Land	Park	Playground	Play Area
		LP03PD	Paddling Pool	L	P	3	PD	Land	Park	Playground	Paddling Pool
148	Den_LU	LU	Unused Land	L	U			Land	Unused Land		
149	Den_LU01	LU01	Vacant / Derelict Land	L	U	1		Land	Unused Land	Vacant / Derelict Land	
150	Den_LW	LW	Water	L	W			Land	Water		
151	Den_LW	LW01	Lake / Reservoir	L	W	1		Land	Water	Lake / Reservoir	
		LW01BP	Balancing Pond	L	w	1	BP	Land	Water	Lake / Reservoir	Balancing Pond
		LW01BV	Buried Reservoir	L	W	1	BV	Land	Water	Lake / Reservoir	Buried Reservoir
152	Den_LW02	LW02	Named Pond	L	W	2		Land	Water	Named Pond	
		LWO2DE	Dew Pond	L	W	2	DE	Land	Water	Named Pond	Dew Pond
		LW02DP	Decoy Pond	L	W	2	DP	Land	Water	Named Pond	Decoy Pond
		LW02IW	Static Water	L	W	2	IW	Land	Water	Named Pond	Static Water
153	Den_M	M	Military	M				Military			
154	Den_MA	MA	Army	M	A			Military	Army		
		MA99AR	Army Military Range	M	A	99	AR	Military	Army		Army Military Range
		MA99AS	Army Site	M	A	99	AS	Military	Army		Army Site
		MA99AT	Army Military Training	M	A	99	AT	Military	Army		Army Military Training
		MA99AG	Army Military Storage	M	A	99	AG	Military	Army		Army Military Storage
155	Den_MB	MB	Ancillary Building	M	B			Military	Ancillary Building		
		MB99TG	Military Target	M	B	99	TG	Military	Ancillary Building		Military Target
156	Den_MF	MF	Air Force	M	F			Military	Air Force		
		MF99UG	Air Force Military Storage	M	F	99	UG	Military	Air Force		Air Force Military Storage
		MF99UR	Air Force Military Range	M	F	99	UR	Military	Air Force		Air Force Military Range

		MF99US	Air Force Site	M	F	99	US	Military	Air Force		Air Force Site
		MF99UT	Air Force Military Training	M	F	99	UT	Military	Air Force		Air Force Military Training
157	Den_MG	MG	Defence Estates	M	G			Military	Defence Estates		
		MN	Navy	M	N			Military	Navy		
		MN99VG	Naval Military Storage	M	N	99	VG	Military	Navy		Naval Military Storage
158	Den_MN	MN99VR	Naval Military Range	M	N	99	VR	Military	Navy		Naval Military Range
		MN99VS	Naval Site	M	N	99	VS	Military	Navy		Naval Site
		MN99VT	Naval Military Training	M	N	99	VT	Military	Navy		Naval Military Training
159	Den_OG04	OG04	Slurry Bed / Pit	0	G	4		Other (Ordnance Survey Only)	Agricultural Support Objects	Slurry Bed / Pit	
160	Den_OI	OI	Industrial Support	0	1			Other (Ordnance Survey Only)	Industrial Support		
161	Den_OIO2	0102	Caisson / Dry Dock / Grid	0	।	2		Other (Ordnance Survey Only)	Industrial Support	Caisson / Dry Dock / Grid	
162	Den_OIO3	0103	Channel/ Conveyor / Conduit / Pipe	0	1	3		Other (Ordnance Survey Only)	Industrial Support	Channel / Conveyor / Conduit / Pipe	
163	Den_OI04	0104	Chimney / Flue	0	।	4		Other (Ordnance Survey Only)	Industrial Support	Chimney / Flue	
164	Den_OI05	0105	Crane / Hoist / Winch / Material Elevator	0	,	5		Other (Ordnance Survey Only)	Industrial Support	Crane / Hoist / Winch / Material Elevator	
165	Den_OI06	0106	Flare Stack	0	1	6		Other (Ordnance Survey Only)	Industrial Support	Flare Stack	
166	Den_0107	0107	$\begin{aligned} & \text { Hopper / Silo / } \\ & \text { Cistern / Tank } \\ & \hline \end{aligned}$	0	,	7		Other (Ordnance Survey Only)	Industrial Support	$\begin{aligned} & \text { Hopper / Silo / Cistern / } \\ & \text { Tank } \end{aligned}$	
167	Den_O108	0108	Grab / Skip / Other Industrial Waste Machinery / Discharging	0	I	8		Other (Ordnance Survey Only)	Industrial Support	Grab / Skip / Other Industrial Waste Machinery / Discharging	
168	Den_OI09	0109	Kiln / Oven / Smelter	0	,	9		Other (Ordnance Survey Only)	Industrial Support	Kiln / Oven / Smelter	
169	Den_OI10	OI10	Manhole / Shaft	0	1	10		Other (Ordnance Survey Only)	Industrial Support	Manhole / Shaft	

170	Den_OI13	Ol 13	Solar Panel / Waterwheel	0	1	13	Other (Ordnance Survey Only)	Industrial Support	Solar Panel / Waterwheel	
171	Den_OR01	ORO1	Postal Box	0	R	1	Other (Ordnance Survey Only)	Royal Mail Infrastructure	Postal Box	
172	Den_OR03	ORO3	PO Box	0	R	3	Other (Ordnance Survey Only)	Royal Mail Infrastructure	PO Box	
173	Den_R	R	Residential	R			Residential			
174	Den_RB	RB	Ancillary Building	R	B		Residential	Ancillary Building		
		RC	Car Park Space	R	C		Residential	Car Park Space		
175	Den_ RC01	RC01	Allocated Parking	R	C	1	Residential	Car Park Space	Allocated Parking	
176	Den_RD	RD	Dwelling	R	D		Residential	Dwelling		
177	Den_RD01	RD01	Caravan	R	D	1	Residential	Dwelling	Caravan	
178	Den_RD02	RD02	Detached	R	D	2	Residential	Dwelling	Detached	
179	Den_RD03	RD03	Semi-Detached	R	D	3	Residential	Dwelling	Semi-Detached	
180	Den_RD04	RD04	Terraced	R	D	4	Residential	Dwelling	Terraced	
181	Den_RD06	RD06	Self Contained Flat (Includes Maisonette / Apartment)	R	D	6	Residential	Dwelling	Self Contained Flat (Includes Maisonette / Apartment)	
182	Den_RD07	RD07	House Boat	R	D	7	Residential	Dwelling	House Boat	
183	Den_RD08	RD08	Sheltered Accommodatio n	R	D	8	Residential	Dwelling	Sheltered Accommodation	
184	Den_RD10	RD10	Privately Owned Holiday Caravan / Chalet	R	D	10	Residential	Dwelling	Privately Owned Holiday Caravan / Chalet	
185	Den_RG	RG	Garage	R	G		Residential	Garage		
186	Den_RG02	RG02	Lock-Up Garage / Garage Court	R	G	2	Residential	Garage	Lock-Up Garage / Garage Court	
187	Den_RH	RH	House In Multiple Occupation	R	H		Residential	House In Multiple Occupation		

188	Den_ RH01	RHO1	HMO Parent	R	H	1		Residential	House In Multiple Occupation	HMO Parent	
189	Den_ RH02	RH02	HMO Bedsit / Other Non Self Contained Accommodatio n	R	H	2		Residential	House In Multiple Occupation	HMO Bedsit / Other Non Self Contained Accommodation	
190	Den_ RH03	RH03	HMO Not Further Divided	R	H	3		Residential	House In Multiple Occupation	HMO Not Further Divided	
191	Den_RI	RI	Residential Institution	R	1			Residential	Residential Institution		
192	Den_RIO1	RI01	Care / Nursing Home	R	।	1		Residential	Residential Institution	Care / Nursing Home	
		RIO2	Communal Residence	R	1	2		Residential	Residential Institution	Communal Residence	
193	Den_ R102	RIO2NC	Non- Commercial Lodgings	R	।	2	NC	Residential	Residential Institution	Communal Residence	Non-Commercial Lodgings
		RIO2RC	Religious Community	R	,	2	RC	Residential	Residential Institution	Communal Residence	Religious Community
194	Den_R103	RI03	Residential Education	R	।	3		Residential	Residential Institution	Residential Education	
195	Den_Z	Z	Object of Interest	Z				Object of Interest			
196	Den_ ZA	ZA	Archaeological Dig Site	Z	A			Object of Interest	Archaeological Dig Site		
197	Den_ZM	ZM	Monument	Z	M			Object of Interest	Monument		
		ZM01	Obelisk / Milestone / Standing Stone	Z	M	1		Object of Interest	Monument	Obelisk / Milestone / Standing Stone	
198	Den_ ZM01	ZM010B	Obelisk	Z	M	1	OB	Object of Interest	Monument	Obelisk / Milestone / Standing Stone	Obelisk
		ZM01ST	Standing Stone	Z	M	1	ST	Object of Interest	Monument	Obelisk / Milestone / Standing Stone	Standing Stone
199	Den_ZM02	ZM02	Memorial / Market Cross	Z	M	2		Object of Interest	Monument	Memorial / Market Cross	
200	Den_ZM03	ZM03	Statue	Z	M	3		Object of Interest	Monument	Statue	
201	Den_ZM04	ZM04	Castle / Historic Ruin	Z	M	4		Object of Interest	Monument	Castle / Historic Ruin	
20	Den ZMO	ZM05	Other Structure	Z	M	5		Object of Interest	Monument	Other Structure	
		ZM05BS	Boundary Stone	Z	M	5	BS	Object of Interest	Monument	Other Structure	Boundary Stone

		ZM05PN	Permanent Art Display / Sculpture	Z	M	5	PN	Object of Interest	Monument	Other Structure	Permanent Art Display / Sculpture
		ZM05CE	Cascade / Fountain	Z	M	5	CE	Object of Interest	Monument	Other Structure	Cascade / Fountain
		ZM05WI	Windmill (Inactive)	Z	M	5	WI	Object of Interest	Monument	Other Structure	Windmill (Inactive)
203	Den_ZS	ZS	Stately Home	Z	S			Object of Interest	Stately Home		
204	Den_ZU	ZU	Underground Feature	Z	U			Object of Interest	Underground Feature		
205	Den_ZU01	ZU01	Cave	Z	U	1		Object of Interest	Underground Feature	Cave	
206	Den_ZV	ZV	Other Underground Feature	Z	V			Object of Interest	Other Underground Feature		
		ZV02	Disused Mine	Z	V	2		Object of Interest	Other Underground Feature	Disused Mine	
		ZV02MI	Mineral Mining / Inactive	Z	V	2	MI	Object of Interest	Other Underground Feature	Disused Mine	Mineral Mining / Inactive
207	Den_ZV02	ZV02OI	Oil And / Gas Extraction/ Inactive	Z	V	2	OI	Object of Interest	Other Underground Feature	Disused Mine	Oil And / Gas Extraction/ Inactive
		ZV02QI	Mineral Quarrying And / Open Extraction / Inactive	Z	V	2	Q	Object of Interest	Other Underground Feature	Disused Mine	Mineral Quarrying And / Open Extraction / Inactive
		ZV03	Well / Spring	Z	V	3		Object of Interest	Other Underground Feature	Well / Spring	
		ZV03SG	Spring	Z	V	3	SG	Object of Interest	Other Underground Feature	Well / Spring	Spring
208	Den_ZV03	ZV03WL	Well	Z	V	3	WL	Object of Interest	Other Underground Feature	Well / Spring	Well
209	Den_ZW	ZW	Place Of Worship	Z	W			Object of Interest	Place Of Worship		
210	Den_ZW99CA	ZW99CA	Cathedral	Z	W	99	CA	Object of Interest	Place Of Worship		Cathedral
211	Den_ ZW99CH	zW99CH	Church	Z	W	99	CH	Object of Interest	Place Of Worship		Church
212	Den_ZW99CP	ZW99CP	Chapel	Z	W	99	CP	Object of Interest	Place Of Worship		Chapel
213	Den_ZW99KH	ZW99KH	Kingdom Hall	Z	W	99	KH	Object of Interest	Place Of Worship		Kingdom Hall
214	Den_zW99MQ	ZW99MQ	Mosque	Z	W	99	MQ	Object of Interest	Place Of Worship		Mosque

215	Den_zw99sy	zW99sY	Synagogue	z	w	99	SY	Object of Interest	Place Of Worship	Synagogue
216	Den_zw99tP	zW99tP	Temple	z	w	99	TP	Object of Interest	Place Of Worship	Temple
217	Den_Bstops	Density of bus stops calculated from NAPTAN database.								

4.1.2 Health specific destination accessibility

Walkable destinations having the propensity to influence health in a specific way were parameterized in the present study in the form of network distance from a respondent's dwelling to the nearest destination. Network proximity was used as opposed to the conventional Euclidean/airline distance, as it provides a more accurate behavioural measurement of accessibility. Street network distance (in metres) was calculated using 'closest facility analysis' in Network Analyst, ArcGIS 10.2. In the case of parks (land use code LP) which is a larger destination occupying a significant area, multiple entry points of access were manually digitized after overlaying it on the 0.5 meter resolution colour infrared image of the area of interest. However, in the case of building destinations, a single point was employed as the location of the facility. 39 different health promoting/inhibiting land use destinations were used in the present study.

Deliverable file 3:

File Name (size)	Description
Wales_UKB_LU_ND.csv (9.08 MB)	Street network distance in metres of UK Biobank participant's residence from specific destinations.

[^0]Table 3: Description of variables used for calculation of destination accessibility

Column No.	Variable	Description of variable	
		Variable definition: Destination category for calculation of street network distance	Included AddressBase Premium land use classes in the destination category
1	Encoded anonymised participant ID	-	Le
2	ND_CCO4	Public/Village Hall/Other Community Facility	CC04, CC04YR
3	ND_CC12	Job Centre	CC12
4	ND_CE01	College	CE01, CE01FE, CE01HE
5	ND_CE02	Childrens Nursery/Creche	CE02
6	ND_CE03	$\begin{aligned} & \text { Preparatory/First/Primary/Infant/Junior/M } \\ & \text { iddle School } \end{aligned}$	CE03, CE03FS, CE03IS, CE03JS, CE03MS, CE03NP, CE03PS
7	ND_CE04	Secondary/High School	CE04, CE04NS, CE04SS
8	ND_CE05	University	CE05
9	ND_CIO1	Factory/Manufacturing	CI01, CI01AW, CI01BB, CI01BR, CI01BW, CI01CD, CI01CM, CI01CW, CI01DA, CI01DY, CI01FL, CI01FO, CI01GW, CI01MG, CI01OH, CI01OR, CI01PG, CI01PM, CI01PW, CI01YD, CI01SR, CI01SW, CI01TL, CIO1WN
10	ND_Cl02	Mineral/Ore Working/Quarry/Mine	CI02, CI02MA, CIO2MD, CI02MP, CI02OA, CI02QA
11	ND_Cl03	Workshop/Light Industrial	CI03, CI03GA
12	ND_CI04	Warehouse/Store/Storage Depot	CI04, CI04CS, CI04PL, CI04SO, CI04TS
13	ND_O104	Industrial Support - Chimney/Flue	OIO4
14	ND_CL03	Library	CL03, CL03RR
15	ND_CL07	Bingo Hall/Cinema/Conference/Exhibition Centre/Theatre/Concert Hall	CL07, CL07TH, CL07CI, CL07EN, CL07EX
16	ND_CM01	Dentist	CM01
17	ND_CM02	GP Practice Surgery/Clinic	CM02, CM02HL, CM02HC
18	ND_CM03	Hospital/Hospice	CM03, CM03HI, CM03HP
19	ND_CO01	Office/Work Studio	CO01
20	ND_CO01GV	Central Government Service	C001GV

21	ND_CO01LG	Local Government Service	CO01LG
22	ND_CR01	Bank/Financial Service	CR01
23	ND_CR02	Retail Service Agent	CR02
24	ND_CR02PO	Post Office	CR02PO
25	ND_CR06	Public House/Bar/Night Club	CR06
26	ND_CR07	Restaurant/Cafeteria	CR07
27	ND_CR10	Fast Food Outlet/Takeaway (Hot/Cold)	CR10
28	ND_Bstops	Bus Stops	Bus stops (NAPTAN data)
39	ND_CT03	Car/Coach/Commercial Vehicle/Taxi Parking/Park and Ride Site	
30	ND_CT08	Station/Interchange/Terminal/Halt	CT03, CT03PK, CT03PP, CT03PU, CT03VP
31	ND_CU01	Electricity Sub-station	CU01
32	ND_CU02	Landfill	CU02
33	ND_CU03	Power Station/Energy Production	CU03, CU03ED, CU03EP, CU03WF, CT08VH
34	ND_CU07	Water/Waste Water/Sewage Treatment Works	CU07, CU07WR, CU07WT
35	ND_Recycling	Recycling	CC09, CC10, CI06, CI07
36	ND_CX01	Police/Transport Police Station	CX01, CX01PT
37	ND_CX02	Fire Station	CX02, CX02FT
38	ND_CX03	Ambulance Station	CX03, CX03AA
39	ND_ZW	Places of Worship	ZW, ZW99AB, ZW99CA, ZW99CH, ZW99CP, ZW99GU, ZW99KH, ZW99MQ, ZW99MT, ZW99SU, ZW99SY, ZW99TP, ZW99LG, CC07
40	ND_LP	Parks	LP, LP01, LP02, LP03, LP03PA, LP03PD, LP04

4.2 Street network accessibility

spatial Design Network Analysis (sDNA) is a state-of-the-art technique of urban network analysis that have evolved from the conventional network analyses techniques like space syntax. Details on urban network analyses techniques employed in health research can be found elsewhere ${ }^{1,47}$. sDNA employs a technically improved network algorithm and has been developed by Cardiff University's School of Planning and Geography (http://www.cardiff.ac.uk/sdna). sDNA is able to overcome many of the inherent problems of conventional network analysis techniques, especially the representational problems and the modifiable link problem by its ability to function with off-theshelf street centreline data such as Ordnance Survey ITN data, with minimum preparation.

The Ordnance Survey Mastermap Integrated Transport Network (ITN) layer for Wales with a 10 mile buffer was extracted. The sDNA Prepare tool was employed for automated cleaning of the ITN layer including the initial processes of removal of traffic islands as well as repairing of split links. sDNA standardizes the network link as the fundamental unit of computation. By using such industrystandard link representation, sDNA overcomes the modifiable link unit problem, as well as provides a better physical interpretation of road centreline data. In an urban space, several socio-economic processes such as density of residences, jobs, traffic flows, pedestrian movements and so on have been known to be correlated with the density of street network links. sDNA offers the analyst a diverse choice of refined graphical indices of accessibility, thereby enabling analyses of network centrality (in terms of closeness and betweenness centrality), network detour (in terms of sum of crow flight, mean diversion ratio and diversion ratio), network shape and efficiency (in terms of convex hull area, perimeter and bearing, and network shape index), link characteristics (in terms of length, angular curvature and connectivity) and radius-based indices (in terms of number of links, total network length, total angular distance, total and mean geodesic length and number of junctions within a defined catchment radius $)^{48}$. Details of the twenty indices of physical street-level accessibility have been described in Table 4. sDNA provides the option of enumerating the centrality indices based on the notion of Euclidean or angular distance, with the choice of several weighting functions such as link weighting, link length weighting or other user-customized weighted indices. As in angular segment analysis, sDNA enumerates all the graphical accessibility indices within a specific user-defined catchment radius; nonetheless, sDNA provides the user with the option of discrete or continuous space analysis. In discrete space analysis, each link is considered as a discrete (whole) entity and, if a part of a link falls inside a given radius, the entire link is counted as being within the radius. On the other hand, in continuous space analysis, each link is treated as a continuous entity and only the fractional part of a link falling inside a given radius is counted, leading to fractional
(proportional) link counts. The former is computationally faster, while the latter produces more accurate results. This study has employed continuous analysis throughout. sDNA has been tested and has successfully reproduced results equivalent to or better than those of predecessor space syntax methods. SDNA is also innovative in its class in providing a workflow that is fully automated. The UK Ordnance Survey (OS) Topography Layer, AddressBase Premium and Integrated Transport Network Layer linkages are cross-referenced through unique identifiers; the OS supports Digital National Framework identifiers, which facilitates integration and sharing of spatial information from diverse sources.

All the sDNA measured indices of accessibility were calculated for all the street links within the boundaries of the study area (Wales with a 10 kilometre buffer). Analyses were done at several spatial scales to take in to account the influence of physical accessibility at micro (neighbourhood), meso (city) and macro (regional) levels. Nineteen different catchment radii were employed in the present study for analysis: 400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, $17500,20000,25000,30000,35000,40000,45000,50000$ metres. All the sDNA network metrics were subsequently linked to the dwelling location of the UK Biobank participant. Three types of linkages were used in the present study:

- Physical accessibility indices of the street network link closest to the UK Biobank respondent's dwelling location were linked together.
- Physical accessibility indices of the street network link within a 25 metres buffer of the UK Biobank respondent's dwelling location were linked together.
- Physical accessibility indices of the street network link within a 50 metres buffer of the UK Biobank respondent's dwelling location were linked together.

In the latter two cases mean, minimum, maximum and standard deviation in the accessibility indices of all the links within 25 and 50 metres of the UK Biobank respondent's dwelling location were enumerated.

Table 4: List of sDNA modelled street accessibility indices

sDNA modelled street accessibility index (acronym used*)	Description	Spatial scale of measurement (catchment radius R in metres)
Link characteristics: These measures describe the characteristics of individual links in the network and hence they are not network indices per se.		
Link Connectivity (Link_Connectivity)	The number of link ends that an individual link is connected to at its end points.	Measured for each link in the network.
Link Length (Link_Length)	Length of the individual link in the network.	Measured for each link in the network.
Link Angular Curvature (Link_Ang_Curvature)	The cumulative angular change while traversing the full length of a link in degrees.	Measured for each link in the network.
Centrality analysis: These set of measures owe their origin to the graph theory. The associations between urban morphology and the social phenomena dependent on it are essentially captured by indices of relationality in the graphs. The notion of accessibility captured by these measures acts to formally elucidate how network morphology influences individual activity behaviours and drives various socioeconomic processes. They indicate the centrality of a vertex within a graph.		
Mean Angular Distance (Mean_Ang_Dist_WI_RXXXXXc)	In graphical terminology, also called as the closeness centrality/accessibility. It is an indicator of the degree of difficulty, on average, of navigating to all possible destinations within a specified radius from each given link. This is weighted by the link length.	$\begin{aligned} & 400,800,1200,1500, \\ & 2000,3000,5000, \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Network Quantity Penalized for Distance (NetQuantPD_Ang_WI_XXXXXC)	This is an improved measure of the conventional closeness centrality and takes in to account the effects of network quantity. For each link within a specified radius, it takes the network quantity (defined link length) and divides it by the difficulty of access (angular). This is weighted by the link length.	$\begin{aligned} & 400,800,1200,1500, \\ & 2000,3000,5000, \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
	In graphical terminology, also called	400, 800, 1200, 1500,

Betweenness (Betweenness_Ang_WI_RXXXXXc)	as the betweenness centrality or path overlap or through-movement potential. It is indicative of how often a given link is used for a journey within a defined radius. Measured as the sum of geodesics that pass through a link for a journey within a defined radius. This has been weighted by origin-destination link length.	$\begin{aligned} & 2000,3000,5000, \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Two Phase Betweenness (TPBetweenness_Ang_WI_RXXXXXc)	This is betweenness weighted by a two-step floating catchment model. Measured as the sum of geodesics that pass through a link for a journey within a defined radius weighted by the proportion of network quantity accessible from geodesic origin that is represented by geodesic destination.	$\begin{aligned} & 400,800,1200,1500, \\ & 2000,3000,5000 \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Two Phase Destination assignment (TPDestination_Ang_WI_RXXXXXc)	This is the total flow to each destination under the two phase betweenness model. In other words, it is similar to the two phase betweenness, but measured for the destination of each geodesic only.	$\begin{aligned} & 400,800,1200,1500, \\ & 2000,3000,5000 \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Simple radial measures: These measures pertain to the characteristics of the links within a specified network radius.		
Links (Links_RXXXXXC)	The number of network links within a specified network radius.	$\begin{aligned} & 400,800,1200,1500, \\ & 2000,3000,5000 \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Length (Length_RXXXXXc)	The total network length within a specified network radius.	$\begin{aligned} & 400,800,1200,1500, \\ & 2000,3000,5000, \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Angular Distance (Ang_Dist_RXXXXXc)	Sum of angular distance of each individual link within a specified radius.	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500 \\ & 15000,17500,20000, \end{aligned}$

		$\begin{aligned} & 25000,30000,35000 \\ & 40000,45000,50000 \end{aligned}$
Weight (Weight_WI_RXXXXXC)	Total weight within a specified radius. Weights have been specified with respect unit of network length (in length weighted analysis).	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Mean Geometric Length (MeanGeoLen_Ang_WI_RXXXXXc)	Mean of the angular geodesic Euclidean length within a specified radius. This has been weighted by the origin to destination link length.	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500, \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Network detour analysis: Measure the network severance by comparing the hypothetical crow fly distance to actual network distance. It is an indicator of the extent of deviation of the network from the most direct path.		
Mean Crow Flight Distance (Mean_Crow_Flight_WI_RXXXXXc)	Mean of the crow flight distance between a link and all the links within a defined radius. This is weighted by the link length.	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500 \\ & 15000,17500,20000 \\ & 25000,30000,35000 \\ & 40000,45000,50000 \end{aligned}$
Diversion Ratio (Diversion_Ratio_Ang_WI_RXXXXXc)	Mean of the ratio of actual geodesic length to the crow flight distance for all geodesics within a defined radius. This is weighted by the link length. Indicative of the degree of deviation of the actual paths from the crow flight path.	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500 \\ & 15000,17500,20000 \\ & 25000,30000,35000 \\ & 40000,45000,50000 \end{aligned}$
Network shape: Measure of network efficiency in terms of the spatial footprint of the street network in urban space.		
Convex Hull Area (Convex_Hull_Area_RXXXXXC)	Area of the convex hull containing all the origins and destinations within a defined radius. It is an indicator of the network footprint or the spatial spread of the street network in the	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000,

	urban space.	40000, 45000, 50000
Convex Hull Perimeter (Convex_Hull_Perimeter_RXXXXXC)	Length of perimeter of the convex hull containing all the origins and destinations within a defined radius.	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500 \\ & 15000,17500,20000 \\ & 25000,30000,35000 \\ & 40000,45000,50000 \end{aligned}$
Convex Hull Maximum Radius (Convex_Hull_Max_Radius_RXXXXXc)	Maximum radius of the convex hull measured as the crow flight distance from the centre of the origin link to the furthest point on the convex hull of a defined radius.	$\begin{aligned} & 400,800,1200,1500, \\ & 2000,3000,5000 \\ & 7500,10000,12500, \\ & 15000,17500,20000 \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Convex Hull Bearing (Convex_Hull_Bearing_RXXXXXC)	Compass bearing of the line of maximum radius of convex hull of a defined radius, measured in degrees. It indicates the direction in which one can travel furthest from the origin link, while staying inside the network radius.	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500 \\ & 15000,17500,20000, \\ & 25000,30000,35000, \\ & 40000,45000,50000 \end{aligned}$
Convex Hull Shape Index (Convex_Hull_Shape_Index_RXXXXXC)	Measures the degree of uniformity of the network in all directions. It is measured as the square of the hull perimeter divided by 4Π times the hull area. Ranges from 1 in case of a circle to higher values, with higher indicating non-uniformity across all directions.	$\begin{aligned} & 400,800,1200,1500 \\ & 2000,3000,5000 \\ & 7500,10000,12500 \\ & 15000,17500,20000 \\ & 25000,30000,35000 \\ & 40000,45000,50000 \end{aligned}$

* In each of the acronyms, the presence of:

WI - Indicates that the analyses is weighted by origin - destination link length,
$R X X X X X$ - Indicates the catchment radius at which the analysis was conducted; this can be R500 for radius of 500 metres or R50000 for radius of 50000 metres,
c - Indicates continuous space analysis.

Deliverable files 4a-4i:

File Name (size)	Description
UKB_Wales_sDNA_closest_link.csv (72.1 MB)	Physical accessibility indices of the street network link closest to the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_mean.csv (66.8 MB)	Mean value of physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_min.csv (66.4 MB)	Minimum value of physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_max.csv (66.4 MB)	Maximum value of physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_STD.csv (30.4 MB)	Standard deviation in physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_50m_mean.csv (72.4 MB)	Mean value of physical the accessibility indices of all the links lying within 50 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_50m_min.csv (72.1 MB)	Minimum value of physical the accessibility indices of all the links lying within 50 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_50m_max.csv (71.3 MB)	Maximum value of physical the accessibility indices of all the links lying within 50 metres of the UK Biobank respondent's dwelling location.
Standard deviation in physical the accessibility indices of all	
the links lying within 50 metres of the UK Biobank	
respondent's dwelling location.	

Header file names:

UKB_Wales_sDNA_closest_link_header.csv (9.11 KB)
UKB_Wales_sDNA_25m_mean_header.csv (10.7 KB)
UKB_Wales_sDNA_25m_min_header.csv (10.3 KB)
UKB_Wales_sDNA_25m_max_header.csv (10.3 KB)
UKB_Wales_sDNA_25m_STD_header.csv (10.3 KB)
UKB_Wales_sDNA_50m_mean_header.csv (10.6 KB)
UKB_Wales_sDNA_50m_min_header.csv (10.3 KB)
UKB_Wales_sDNA_50m_max_header.csv (10.3 KB)
UKB_Wales_sDNA_50m_STD_header.csv (10.3 KB)

Table 5: Description of variables used for calculation of physical accessibility of street links

Table: UKB_Wales_sDNA_closest_link.csv		Tables: UKB_Wales_sDNA_25m_mean.csv UKB_Wales_sDNA_50m_mean.csv		Tables: UKB_Wales_sDNA_25m_min.csv UKB_Wales_sDNA_50m_min.csv		Tables: UKB_Wales_sDNA_25m_max.csv UKB_Wales_sDNA_50m_max.csv		Tables: UKB_Wales_sDNA_25m_STD.csv UKB_Wales_sDNA_50m_STD.csv	
Column No.	Variable*	Column No.	Variable*	Column No.	Variable*	Column No.	Variable*	Column No.	Variable*
1	Encoded anonymised participant ID								
2	Distance to closest link	2	Link_frequency	2	Link_frequency	2	Link_frequency	2	Link_frequency
3	Link_Connectivity	3	MEAN_Link_Connectivity	3	MIN_Link_Connectivity	3	MAX_Link_Connectivity	3	STD_Link_Connectivity
4	Link_Length	4	MEAN_Link_Length	4	MIN_Link_Length	4	MAX_Link_Length	4	STD_Link_Length
5	Link_Ang_Curvature	5	MEAN_Link_Ang_Curvature	5	MIN_Link_Ang_Curvature	5	MAX_Link_Ang_Curvature	5	STD_Link_Ang_Curvature
6	Mean_Ang_Dist_WI_R400c	6	MEAN_Mean_Ang_Dist_WI_R40 Oc	6	MIN_Mean_Ang_Dist_WI_R400c	6	MAX_Mean_Ang_Dist_WI_R400c	6	STD_Mean_Ang_Dist_WI_R400c
7	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R40 } \\ & \text { Oc } \end{aligned}$	7	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R4 } \\ & \text { OOc } \end{aligned}$	7	$\begin{aligned} & \text { MIN_NetQuantPD_Ang_WI_R400 } \\ & \text { c } \end{aligned}$	7	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R40 } \\ & \text { Oc } \end{aligned}$	7	$\begin{aligned} & \text { STD_NetQuantPD_Ang_WI_R400 } \\ & \text { c } \end{aligned}$
8	$\begin{aligned} & \text { Betweenness_Ang_WI_R40 } \\ & \text { Oc } \end{aligned}$	8	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 400c } \end{aligned}$	8	$\begin{aligned} & \text { MIN_Betweenness_Ang_WI_R40 } \\ & \text { Oc } \end{aligned}$	8	$\begin{aligned} & \text { MAX_Betweenness_Ang_WI_R40 } \\ & \text { Oc } \end{aligned}$	8	$\begin{aligned} & \text { STD_Betweenness_Ang_WI_R40 } \\ & \text { Oc } \end{aligned}$
9	```TPBetweenness_Ang_WI_R 400c```	9	MEAN_TPBetweenness_Ang_WI _R400c	9	```MIN_TPBetweenness_Ang_WI_R 400c```	9	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & 400 \mathrm{c} \end{aligned}$	9	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 400c } \end{aligned}$
10	TPDestination_Ang_WI_R4 00c	10	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 400c } \end{aligned}$	10	```MIN_TPDestination_Ang_WI_R40 Oc```	10	```MAX_TPDestination_Ang_WI_R4 O0c```	10	```STD_TPDestination_Ang_WI_R40 Oc```
11	Links_R400c	11	MEAN_Links_R400c	11	MIN_Links_R400c	11	MAX_Links_R400c	11	STD_Links_R400c
12	Length_R400c	12	MEAN_Length_R400c	12	MIN_Length_R400c	12	MAX_Length_R400c	12	STD_Length_R400c
13	Ang_Dist_R400c	13	MEAN_Ang_Dist_R400c	13	MIN_Ang_Dist_R400c	13	MAX_Ang_Dist_R400c	13	STD_Ang_Dist_R400c
14	Weight_WI_R400c	14	MEAN_Weight_WI_R400c	14	MIN_Weight_WI_R400c	14	MAX_Weight_WI_R400c	14	STD_Weight_WI_R400c
15	MeanGeoLen_Ang_WI_R40 Oc	15	MEAN_MeanGeoLen_Ang_WI_R 400c	15	MIN_MeanGeoLen_Ang_WI_R40 Oc	15	```MAX_MeanGeoLen_Ang_WI_R40 Oc```	15	```STD_MeanGeoLen_Ang_WI_R40 Oc```
16	$\begin{aligned} & \hline \text { Mean_Crow_Flight_WI_R4 } \\ & \text { 00c } \end{aligned}$	16	```MEAN_Mean_Crow_Flight_WI_R 400c```	16	```MIN_Mean_Crow_Flight_WI_R40 Oc```	16	```MAX_Mean_Crow_Flight_WI_R4 00c```	16	```STD_Mean_Crow_Flight_WI_R40 Oc```
17	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 400c } \end{aligned}$	17	MEAN_Diversion_Ratio_Ang_WI _R400c	17	$\begin{aligned} & \hline \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & 400 \mathrm{c} \end{aligned}$	17	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & 400 \mathrm{c} \end{aligned}$	17	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 400c } \end{aligned}$
18	Convex_Hull_Area_R400c	18	MEAN_Convex_Hull_Area_R400c	18	MIN_Convex_Hull_Area_R400c	18	MAX_Convex_Hull_Area_R400c	18	STD_Convex_Hull_Area_R400c
19	Convex_Hull_Perimeter_R4 00c	19	MEAN_Convex_Hull_Perimeter R400c	19	MIN_Convex_Hull_Perimeter_R4 00c	19	MAX_Convex_Hull_Perimeter_R4 00c	19	$\begin{aligned} & \text { STD_Convex_Hull_Perimeter_R4 } \\ & \text { 00c } \end{aligned}$
20	Convex_Hull_Max_Radius_ R400c	20	MEAN_Convex_Hull_MEAN_Radi us_R400c	20	MIN_Convex_Hull_Max_Radius_ R400c	20	MAX_Convex_Hull_Max_Radius_ R400c	20	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & 400 \mathrm{c} \end{aligned}$
21	$\begin{aligned} & \text { Convex_Hull_Bearing_R400 } \\ & \text { c } \end{aligned}$	21	MEAN_Convex_Hull_Bearing_R4 OOc	21	$\begin{aligned} & \text { MIN_Convex_Hull_Bearing_R400 } \\ & \text { c } \end{aligned}$	21	$\begin{aligned} & \text { MAX_Convex_Hull_Bearing_R400 } \\ & \text { c } \end{aligned}$	21	STD_Convex_Hull_Bearing_R400c

22	$\begin{aligned} & \hline \text { Convex_Hull_Shape_Index_ } \\ & \text { R400c } \end{aligned}$	22	MEAN_Convex_Hull_Shape_Inde x_R400c	22	MIN_Convex_Hull_Shape_Index_ R400c	22	MAX_Convex_Hull_Shape_Index _R400c	22	```STD_Convex_Hull_Shape_Index_ R400c```
23	Mean_Ang_Dist_WI_R800c	23	MEAN_Mean_Ang_Dist_WI_R80 Oc	23	MIN_Mean_Ang_Dist_WI_R800c	23	MAX_Mean_Ang_Dist_WI_R800c	23	STD_Mean_Ang_Dist_WI_R800c
24	NetQuantPD_Ang_WI_R80 Oc	24	MEAN_NetQuantPD_Ang_WI_R8 00c	24	MIN_NetQuantPD_Ang_WI_R800 c	24	MAX_NetQuantPD_Ang_WI_R80 Oc	24	STD_NetQuantPD_Ang_WI_R800 c
25	Betweenness_Ang_WI_R80 Oc	25	```MEAN_Betweenness_Ang_WI_R 800c```	25	```MIN_Betweenness_Ang_WI_R80 Oc```	25	MAX_Betweenness_Ang_WI_R80 Oc	25	```STD_Betweenness_Ang_WI_R80 Oc```
26	TPBetweenness_Ang_WI_R 800c	26	$\begin{aligned} & \text { MEAN_TPBetweenness_Ang_WI } \\ & \text { _R800c } \end{aligned}$	26	```MIN_TPBetweenness_Ang_WI_R 800c```	26	```MAX_TPBetweenness_Ang_WI_R 800c```	26	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 800c } \end{aligned}$
27	TPDestination_Ang_WI_R8 00c	27	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 800c } \end{aligned}$	27	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R80 } \\ & \text { Oc } \end{aligned}$	27	$\begin{aligned} & \hline \text { MAX_TPDestination_Ang_WI_R8 } \\ & \text { 00c } \end{aligned}$	27	$\begin{aligned} & \hline \text { STD_TPDestination_Ang_WI_R80 } \\ & \text { Oc } \end{aligned}$
28	Links_R800c	28	MEAN_Links_R800c	28	MIN_Links_R800c	28	MAX_Links_R800c	28	STD_Links_R800c
29	Length_R800c	29	MEAN_Length_R800c	29	MIN_Length_R800c	29	MAX_Length_R800c	29	STD_Length_R800c
30	Ang_Dist_R800c	30	MEAN_Ang_Dist_R800c	30	MIN_Ang_Dist_R800c	30	MAX_Ang_Dist_R800c	30	STD_Ang_Dist_R800c
31	Weight_WI_R800c	31	MEAN_Weight_WI_R800c	31	MIN_Weight_WI_R800c	31	MAX_Weight_WI_R800c	31	STD_Weight_WI_R800c
32	```MeanGeoLen_Ang_WI_R80 Oc```	32	```MEAN_MeanGeoLen_Ang_WI_R 800c```	32	```MIN_MeanGeoLen_Ang_WI_R80 Oc```	32	```MAX_MeanGeoLen_Ang_WI_R80 Oc```	32	```STD_MeanGeoLen_Ang_WI_R80 Oc```
33	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R8 } \\ & \text { 00c } \end{aligned}$	33	```MEAN_Mean_Crow_Flight_WI_R 800c```	33	```MIN_Mean_Crow_Flight_WI_R80 Oc```	33	MAX_Mean_Crow_Flight_WI_R8 00c	33	```STD_Mean_Crow_Flight_WI_R80 Oc```
34	Diversion_Ratio_Ang_WI_R 800c	34	MEAN_Diversion_Ratio_Ang_WI _R800c	34	MIN_Diversion_Ratio_Ang_WI_R $800 \mathrm{c}$	34	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & \text { 800c } \end{aligned}$	34	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 800c } \end{aligned}$
35	Convex_Hull_Area_R800c	35	MEAN_Convex_Hull_Area_R800c	35	MIN_Convex_Hull_Area_R800c	35	MAX_Convex_Hull_Area_R800c	35	STD_Convex_Hull_Area_R800c
36	```Convex_Hull_Perimeter_R8 00c```	36	MEAN_Convex_Hull_Perimeter_ R800c	36	```MIN_Convex_Hull_Perimeter_R8 00c```	36	MAX_Convex_Hull_Perimeter_R8 00c	36	```STD_Convex_Hull_Perimeter_R8 00c```
37	Convex_Hull_Max_Radius_ R800c	37	MEAN_Convex_Hull_MEAN_Radi us_R800c	37	MIN_Convex_Hull_Max_Radius_ R800c	37	MAX_Convex_Hull_Max_Radius_ R800c	37	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 800c } \end{aligned}$
38	```Convex_Hull_Bearing_R800 c```	38	```MEAN_Convex_Hull_Bearing_R8 00c```	38	$\begin{aligned} & \text { MIN_Convex_Hull_Bearing_R800 } \\ & \text { c } \\ & \hline \end{aligned}$	38	$\begin{aligned} & \text { MAX_Convex_Hull_Bearing_R800 } \\ & \text { c } \end{aligned}$	38	STD_Convex_Hull_Bearing_R800c
39	Convex_Hull_Shape_Index_ R800c	39	MEAN_Convex_Hull_Shape_Inde x R800c	39	MIN_Convex_Hull_Shape_Index_ R800c	39	MAX_Convex_Hull_Shape_Index R800c	39	```STD_Convex_Hull_Shape_Index_ R800c```
40	Mean_Ang_Dist_WI_R1200 c	40	```MEAN_Mean_Ang_Dist_WI_R12 00c```	40	MIN_Mean_Ang_Dist_WI_R1200 c	40	$\begin{aligned} & \text { MAX_Mean_Ang_Dist_WI_R1200 } \\ & \text { c } \end{aligned}$	40	STD_Mean_Ang_Dist_WI_R1200c
41	```NetQuantPD_Ang_WI_R12 00c```	41	$\begin{aligned} & \hline \text { MEAN_NetQuantPD_Ang_WI_R1 } \\ & \text { 200c } \end{aligned}$	41	MIN_NetQuantPD_Ang_WI_R120 Oc	41	MAX_NetQuantPD_Ang_WI_R12 00c	41	```STD_NetQuantPD_Ang_WI_R120 Oc```
42	Betweenness_Ang_WI_R12 00c	42	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$	42	```MIN_Betweenness_Ang_WI_R12 00c```	42	```MAX_Betweenness_Ang_WI_R12 00c```	42	```STD_Betweenness_Ang_WI_R12 O0c```
43	TPBetweenness_Ang_WI_R 1200c	43	$\begin{aligned} & \text { MEAN_TPBetweenness_Ang_WI } \\ & \text { _R1200c } \end{aligned}$	43	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$	43	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & 1200 \mathrm{c} \end{aligned}$	43	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$
44	$\begin{aligned} & \text { TPDestination_Ang_WI_R1 } \\ & \text { 200c } \end{aligned}$	44	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$	44	```MIN_TPDestination_Ang_WI_R12```	44	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R1 } \\ & \text { 200c } \end{aligned}$	44	```STD_TPDestination_Ang_WI_R12 00c```
45	Links_R1200c	45	MEAN_Links_R1200c	45	MIN_Links_R1200c	45	MAX_Links_R1200c	45	STD_Links_R1200c

46	Length_R1200c	46	MEAN_Length_R1200c	46	MIN_Length_R1200c	46	MAX_Length_R1200c	46	STD_Length_R1200c
47	Ang_Dist_R1200c	47	MEAN_Ang_Dist_R1200c	47	MIN_Ang_Dist_R1200c	47	MAX_Ang_Dist_R1200c	47	STD_Ang_Dist_R1200c
48	Weight_WI_R1200c	48	MEAN_Weight_WI_R1200c	48	MIN_Weight_WI_R1200c	48	MAX_Weight_WI_R1200c	48	STD_Weight_WI_R1200c
49	```MeanGeoLen_Ang_WI_R12 00c```	49	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$	49	MIN_MeanGeoLen_Ang_WI_R12 OOc	49	MAX_MeanGeoLen_Ang_WI_R12 OOC	49	```STD_MeanGeoLen_Ang_WI_R12 O0c```
50	```Mean_Crow_Flight_WI_R1 200c```	50	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 1200 \text { c } \end{aligned}$	50	```MIN_Mean_Crow_Flight_WI_R12 00c```	50	```MAX_Mean_Crow_Flight_WI_R1 200c```	50	```STD_Mean_Crow_Flight_WI_R12 00c```
51	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$	51	MEAN_Diversion_Ratio_Ang_WI _R1200c	51	$\begin{aligned} & \hline \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$	51	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & 1200 \mathrm{c} \end{aligned}$	51	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 1200c } \end{aligned}$
52	Convex_Hull_Area_R1200c	52	```MEAN_Convex_Hull_Area_R12O Oc```	52	MIN_Convex_Hull_Area_R1200c	52	MAX_Convex_Hull_Area_R1200c	52	STD_Convex_Hull_Area_R1200c
53	$\begin{aligned} & \text { Convex_Hull_Perimeter_R1 } \\ & \text { 200c } \\ & \hline \end{aligned}$	53	MEAN_Convex_Hull_Perimeter_ R1200c	53	```MIN_Convex_Hull_Perimeter_R1 200c```	53	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R1 } \\ & \text { 200c } \end{aligned}$	53	$\begin{aligned} & \text { STD_Convex_Hull_Perimeter_R1 } \\ & \text { 200c } \end{aligned}$
54	Convex_Hull_Max_Radius_ R1200c	54	MEAN_Convex_Hull_MEAN_Radi us_R1200c	54	MIN_Convex_Hull_Max_Radius_ R1200c	54	MAX_Convex_Hull_Max_Radius_ R1200c	54	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 1200c } \end{aligned}$
55	```Convex_Hull_Bearing_R120 Oc```	55	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R1 } \\ & \text { 200c } \end{aligned}$	55	```MIN_Convex_Hull_Bearing_R120 Oc```	55	```MAX_Convex_Hull_Bearing_R120 Oc```	55	```STD_Convex_Hull_Bearing_R12O Oc```
56	$\begin{aligned} & \hline \text { Convex_Hull_Shape_Index_ } \\ & \text { R1200c } \end{aligned}$	56	MEAN_Convex_Hull_Shape_Inde x_R1200c	56	```MIN_Convex_Hull_Shape_Index_ R1200c```	56	MAX_Convex_Hull_Shape_Index _R1200c	56	```STD_Convex_Hull_Shape_Index_ R1200c```
57	$\begin{aligned} & \text { Mean_Ang_Dist_WI_R1500 } \\ & \text { c } \end{aligned}$	57	MEAN_Mean_Ang_Dist_WI_R15 $00 \mathrm{c}$	57	$\begin{aligned} & \text { MIN_Mean_Ang_Dist_WI_R1500 } \\ & \text { c } \end{aligned}$	57	$\begin{aligned} & \text { MAX_Mean_Ang_Dist_WI_R1500 } \\ & \text { c } \end{aligned}$	57	STD_Mean_Ang_Dist_WI_R1500c
58	NetQuantPD_Ang_WI_R15 00c	58	```MEAN_NetQuantPD_Ang_WI_R1 500c```	58	```MIN_NetQuantPD_Ang_WI_R150 Oc```	58	```MAX_NetQuantPD_Ang_WI_R15 OOc```	58	```STD_NetQuantPD_Ang_WI_R150 Oc```
59	Betweenness_Ang_WI_R15 00c	59	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	59	```MIN_Betweenness_Ang_WI_R15 00c```	59	```MAX_Betweenness_Ang_WI_R15 OOc```	59	```STD_Betweenness_Ang_WI_R15 00c```
60	TPBetweenness_Ang_WI_R 1500c	60	$\begin{aligned} & \hline \text { MEAN_TPBetweenness_Ang_WI } \\ & \text { _R1500c } \end{aligned}$	60	$\begin{aligned} & \hline \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	60	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	60	$\begin{aligned} & \hline \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$
61	TPDestination_Ang_WI_R1 500c	61	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	61	```MIN_TPDestination_Ang_WI_R15 00c```	61	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R1 } \\ & \text { 500c } \end{aligned}$	61	```STD_TPDestination_Ang_WI_R15 O0c```
62	Links_R1500c	62	MEAN_Links_R1500c	62	MIN_Links_R1500c	62	MAX_Links_R1500c	62	STD_Links_R1500c
63	Length_R1500c	63	MEAN_Length_R1500c	63	MIN_Length_R1500c	63	MAX_Length_R1500c	63	STD_Length_R1500c
64	Ang_Dist_R1500c	64	MEAN_Ang_Dist_R1500c	64	MIN_Ang_Dist_R1500c	64	MAX_Ang_Dist_R1500c	64	STD_Ang_Dist_R1500c
65	Weight_WI_R1500c	65	MEAN_Weight_WI_R1500c	65	MIN_Weight_WI_R1500c	65	MAX_Weight_WI_R1500c	65	STD_Weight_WI_R1500c
66	MeanGeoLen_Ang_WI_R15 00c	66	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	66	MIN_MeanGeoLen_Ang_WI_R15 00c	66	MAX_MeanGeoLen_Ang_WI_R15 OOc	66	STD_MeanGeoLen_Ang_WI_R15 00c
67	```Mean_Crow_Flight_WI_R1 500c```	67	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & \text { 1500c } \end{aligned}$	67	```MIN_Mean_Crow_Flight_WI_R15 00c```	67	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R1 } \\ & \text { 500c } \end{aligned}$	67	```STD_Mean_Crow_Flight_WI_R15 00c```
68	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	68	MEAN_Diversion_Ratio_Ang_WI R1500c	68	$\begin{aligned} & \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	68	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$	68	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 1500c } \end{aligned}$
69	Convex_Hull_Area_R1500c	69	```MEAN_Convex_Hull_Area_R150 Oc```	69	MIN_Convex_Hull_Area_R1500c	69	MAX_Convex_Hull_Area_R1500c	69	STD_Convex_Hull_Area_R1500c

70	```Convex_Hull_Perimeter_R1 500c```	70	$\begin{aligned} & \text { MEAN_Convex_Hull_Perimeter_ } \\ & \text { R1500c } \end{aligned}$	70	```MIN_Convex_Hull_Perimeter_R1 500c```	70	```MAX_Convex_Hull_Perimeter_R1 500c```	70	```STD_Convex_Hull_Perimeter_R1 500c```
71	Convex_Hull_Max_Radius_ R1500c	71	MEAN_Convex_Hull_MEAN_Radi us_R1500c	71	MIN_Convex_Hull_Max_Radius_ R1500c	71	MAX_Convex_Hull_Max_Radius_ R1500c	71	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 1500c } \end{aligned}$
72	```Convex_Hull_Bearing_R150 Oc```	72	$\begin{aligned} & \hline \text { MEAN_Convex_Hull_Bearing_R1 } \\ & \text { 500c } \end{aligned}$	72	```MIN_Convex_Hull_Bearing_R150 Oc```	72	$\begin{aligned} & \text { MAX_Convex_Hull_Bearing_R150 } \\ & \text { Oc } \end{aligned}$	72	```STD_Convex_Hull_Bearing_R150 Oc```
73	Convex_Hull_Shape_Index_ R1500c	73	MEAN_Convex_Hull_Shape_Inde x_R1500c	73	MIN_Convex_Hull_Shape_Index_ R1500c	73	$\begin{aligned} & \text { MAX_Convex_Hull_Shape_Index } \\ & \text { _R1500c } \end{aligned}$	73	$\begin{aligned} & \text { STD_Convex_Hull_Shape_Index_ } \\ & \text { R1500c } \end{aligned}$
74	$\begin{aligned} & \text { Mean_Ang_Dist_WI_R2000 } \\ & \text { c } \end{aligned}$	74	MEAN_Mean_Ang_Dist_WI_R20 OOc	74	```MIN_Mean_Ang_Dist_WI_R2000```	74	$\begin{aligned} & \text { MAX_Mean_Ang_Dist_WI_R2000 } \\ & \text { c } \end{aligned}$	74	STD_Mean_Ang_Dist_WI_R2000c
75	NetQuantPD_Ang_WI_R20 00c	75	MEAN_NetQuantPD_Ang_WI_R2 000c	75	```MIN_NetQuantPD_Ang_WI_R200 Oc```	75	MAX_NetQuantPD_Ang_WI_R20 OOC	75	```STD_NetQuantPD_Ang_WI_R200 Oc```
76	```Betweenness_Ang_WI_R20 00c```	76	```MEAN_Betweenness_Ang_WI_R 2000c```	76	```MIN_Betweenness_Ang_WI_R20 00c```	76	```MAX_Betweenness_Ang_WI_R20 00c```	76	```STD_Betweenness_Ang_WI_R2O O0c```
77	TPBetweenness_Ang_WI_R 2000c	77	MEAN_TPBetweenness_Ang_WI R2000c	77	```MIN_TPBetweenness_Ang_WI_R 2000c```	77	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 2000c } \end{aligned}$	77	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 2000c } \end{aligned}$
78	TPDestination_Ang_WI_R2 000c	78	```MEAN_TPDestination_Ang_WI_R 2000c```	78	```MIN_TPDestination_Ang_WI_R2O 00c```	78	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R2 } \\ & \text { 000c } \end{aligned}$	78	$\begin{aligned} & \text { STD_TPDestination_Ang_WI_R20 } \\ & \text { 00c } \end{aligned}$
79	Links_R2000c	79	MEAN_Links_R2000c	79	MIN_Links_R2000c	79	MAX_Links_R2000c	79	STD_Links_R2000c
80	Length_R2000c	80	MEAN_Length_R2000c	80	MIN_Length_R2000c	80	MAX_Length_R2000c	80	STD_Length_R2000c
81	Ang_Dist_R2000c	81	MEAN_Ang_Dist_R2000c	81	MIN_Ang_Dist_R2000c	81	MAX_Ang_Dist_R2000c	81	STD_Ang_Dist_R2000c
82	Weight_WI_R2000c	82	MEAN_Weight_WI_R2000c	82	MIN_Weight_WI_R2000c	82	MAX_Weight_WI_R2000c	82	STD_Weight_WI_R2000c
83	MeanGeoLen_Ang_WI_R20 00c	83	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & \text { 2000c } \end{aligned}$	83	MIN_MeanGeoLen_Ang_WI_R20 00c	83	MAX_MeanGeoLen_Ang_WI_R20 OOc	83	$\begin{aligned} & \text { STD_MeanGeoLen_Ang_WI_R20 } \\ & \text { 00c } \end{aligned}$
84	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R2 } \\ & \text { 000c } \end{aligned}$	84	$\begin{aligned} & \hline \text { MEAN_Mean_Crow_Flight_WI_R } \\ & \text { 2000c } \end{aligned}$	84	```MIN_Mean_Crow_Flight_WI_R2O 00c```	84	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R2 } \\ & \text { 000c } \end{aligned}$	84	$\begin{aligned} & \hline \text { STD_Mean_Crow_Flight_WI_R20 } \\ & \text { OOc } \end{aligned}$
85	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 2000c } \end{aligned}$	85	MEAN_Diversion_Ratio_Ang_WI _R2000c	85	$\begin{aligned} & \hline \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 2000c } \end{aligned}$	85	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & \text { 2000c } \end{aligned}$	85	```STD_Diversion_Ratio_Ang_WI_R 2000c```
86	Convex_Hull_Area_R2000c	86	```MEAN_Convex_Hull_Area_R200 Oc```	86	MIN_Convex_Hull_Area_R2000c	86	MAX_Convex_Hull_Area_R2000c	86	STD_Convex_Hull_Area_R2000c
87	$\begin{aligned} & \text { Convex_Hull_Perimeter_R2 } \\ & \text { 000c } \end{aligned}$	87	MEAN_Convex_Hull_Perimeter_ R2000c	87	MIN_Convex_Hull_Perimeter_R2 000c	87	$\begin{aligned} & \hline \text { MAX_Convex_Hull_Perimeter_R2 } \\ & \text { 000c } \end{aligned}$	87	$\begin{aligned} & \text { STD_Convex_Hull_Perimeter_R2 } \\ & \text { 000c } \end{aligned}$
88	Convex_Hull_Max_Radius_ R2000c	88	MEAN_Convex_Hull_MEAN_Radi us_R2000c	88	MIN_Convex_Hull_Max_Radius_ R2000c	88	MAX_Convex_Hull_Max_Radius_ R2000c	88	```STD_Convex_Hull_Max_Radius_R 2000c```
89	$\begin{aligned} & \text { Convex_Hull_Bearing_R200 } \\ & \text { Oc } \end{aligned}$	89	$\begin{aligned} & \hline \text { MEAN_Convex_Hull_Bearing_R2 } \\ & \text { 000c } \end{aligned}$	89	MIN_Convex_Hull_Bearing_R200 Oc	89	$\begin{aligned} & \text { MAX_Convex_Hull_Bearing_R200 } \\ & \text { Oc } \end{aligned}$	89	```STD_Convex_Hull_Bearing_R200 Oc```
90	Convex_Hull_Shape_Index_ R2000c	90	MEAN_Convex_Hull_Shape_Inde x_R2000c	90	MIN_Convex_Hull_Shape_Index_ R2000c	90	MAX_Convex_Hull_Shape_Index _R2000c	90	```STD_Convex_Hull_Shape_Index_ R2000c```
91	$\begin{aligned} & \text { Mean_Ang_Dist_WI_R3000 } \\ & \text { c } \end{aligned}$	91	MEAN_Mean_Ang_Dist_WI_R30 OOc	91	```MIN_Mean_Ang_Dist_WI_R3000 c```	91	$\begin{aligned} & \text { MAX_Mean_Ang_Dist_WI_R3000 } \\ & \text { c } \end{aligned}$	91	STD_Mean_Ang_Dist_WI_R3000c
92	```NetQuantPD_Ang_WI_R30 00c```	92	```MEAN_NetQuantPD_Ang_WI_R3 000c```	92	```MIN_NetQuantPD_Ang_WI_R300 Oc```	92	```MAX_NetQuantPD_Ang_WI_R30 OOc```	92	```STD_NetQuantPD_Ang_WI_R300 Oc```

93	```Betweenness_Ang_WI_R30 00c```	93	$\begin{aligned} & \hline \text { MEAN_Betweenness_Ang_WI_R } \\ & 3000 \mathrm{c} \end{aligned}$	93	$\begin{aligned} & \text { MIN_Betweenness_Ang_WI_R30 } \\ & \text { 00c } \end{aligned}$	93	```MAX_Betweenness_Ang_WI_R30 00c```	93	```STD_Betweenness_Ang_WI_R30 O0c```
94	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 3000c } \end{aligned}$	94	MEAN_TPBetweenness_Ang_WI R3000c	94	```MIN_TPBetweenness_Ang_WI_R 3000c```	94	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 3000c } \end{aligned}$	94	```STD_TPBetweenness_Ang_WI_R 3000c```
95	TPDestination_Ang_WI_R3 000c	95	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 3000c } \end{aligned}$	95	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R30 } \\ & \text { OOc } \end{aligned}$	95	MAX_TPDestination_Ang_WI_R3 000c	95	```STD_TPDestination_Ang_WI_R30 00c```
96	Links_R3000c	96	MEAN_Links_R3000c	96	MIN_Links_R3000c	96	MAX_Links_R3000c	96	STD_Links_R3000c
97	Length_R3000c	97	MEAN_Length_R3000c	97	MIN_Length_R3000c	97	MAX_Length_R3000c	97	STD_Length_R3000c
98	Ang_Dist_R3000c	98	MEAN_Ang_Dist_R3000c	98	MIN_Ang_Dist_R3000c	98	MAX_Ang_Dist_R3000c	98	STD_Ang_Dist_R3000c
99	Weight_WI_R3000c	99	MEAN_Weight_WI_R3000c	99	MIN_Weight_WI_R3000c	99	MAX_Weight_WI_R3000c	99	STD_Weight_WI_R3000c
100	MeanGeoLen_Ang_WI_R30 00c	100	MEAN_MeanGeoLen_Ang_WI_R 3000c	100	MIN_MeanGeoLen_Ang_WI_R30 00c	100	$\begin{aligned} & \text { MAX_MeanGeoLen_Ang_WI_R30 } \\ & \text { OOc } \end{aligned}$	100	```STD_MeanGeoLen_Ang_WI_R30 00c```
101	Mean_Crow_Flight_WI_R3 000c	101	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 3000 \text { c } \end{aligned}$	101	```MIN_Mean_Crow_Flight_WI_R30 00c```	101	MAX_Mean_Crow_Flight_WI_R3 $000 \mathrm{c}$	101	```STD_Mean_Crow_Flight_WI_R30 00c```
102	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 3000c } \end{aligned}$	102	MEAN_Diversion_Ratio_Ang_WI _R3000c	102	```MIN_Diversion_Ratio_Ang_WI_R 3000c```	102	```MAX_Diversion_Ratio_Ang_WI_R 3000c```	102	```STD_Diversion_Ratio_Ang_WI_R 3000c```
103	Convex_Hull_Area_R3000c	103	```MEAN_Convex_Hull_Area_R300 Oc```	103	MIN_Convex_Hull_Area_R3000c	103	MAX_Convex_Hull_Area_R3000c	103	STD_Convex_Hull_Area_R3000c
104	$\begin{aligned} & \text { Convex_Hull_Perimeter_R3 } \\ & \text { 000c } \end{aligned}$	104	MEAN_Convex_Hull_Perimeter_ R3000c	104	MIN_Convex_Hull_Perimeter_R3 000c	104	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R3 } \\ & \text { 000c } \end{aligned}$	104	```STD_Convex_Hull_Perimeter_R3 000c```
105	$\begin{aligned} & \text { Convex_Hull_Max_Radius_ } \\ & \text { R3000c } \end{aligned}$	105	MEAN_Convex_Hull_MEAN_Radi us_R3000c	105	MIN_Convex_Hull_Max_Radius_ R3000c	105	MAX_Convex_Hull_Max_Radius_ R3000c	105	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 3000c } \end{aligned}$
106	$\begin{aligned} & \text { Convex_Hull_Bearing_R300 } \\ & \text { Oc } \end{aligned}$	106	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R3 } \\ & \text { O00c } \end{aligned}$	106	$\begin{aligned} & \text { MIN_Convex_Hull_Bearing_R300 } \\ & \text { Oc } \end{aligned}$	106	```MAX_Convex_Hull_Bearing_R300 Oc```	106	```STD_Convex_Hull_Bearing_R300 Oc```
107	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R3000c } \end{aligned}$	107	MEAN_Convex_Hull_Shape_Inde x_R3000c	107	MIN_Convex_Hull_Shape_Index_ R3000c	107	$\begin{aligned} & \text { MAX_Convex_Hull_Shape_Index } \\ & \text { _R3000c } \end{aligned}$	107	```STD_Convex_Hull_Shape_Index_ R3000c```
108	$\begin{aligned} & \text { Mean_Ang_Dist_WI_R5000 } \\ & \text { c } \end{aligned}$	108	$\begin{aligned} & \hline \text { MEAN_Mean_Ang_Dist_WI_R50 } \\ & \text { 00c } \end{aligned}$	108	$\begin{aligned} & \text { MIN_Mean_Ang_Dist_WI_R5000 } \\ & \text { c } \end{aligned}$	108	$\begin{aligned} & \text { MAX_Mean_Ang_Dist_WI_R5000 } \\ & \text { c } \end{aligned}$	108	STD_Mean_Ang_Dist_WI_R5000c
109	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R50 } \\ & \text { 00c } \end{aligned}$	109	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R5 } \\ & \text { 000c } \end{aligned}$	109	```MIN_NetQuantPD_Ang_WI_R500 Oc```	109	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R50 } \\ & \text { 00c } \end{aligned}$	109	```STD_NetQuantPD_Ang_WI_R500 Oc```
110	$\begin{aligned} & \text { Betweenness_Ang_WI_R50 } \\ & \text { 00c } \end{aligned}$	110	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 5000c } \end{aligned}$	110	$\begin{aligned} & \text { MIN_Betweenness_Ang_WI_R50 } \\ & \text { 00c } \end{aligned}$	110	$\begin{aligned} & \text { MAX_Betweenness_Ang_WI_R50 } \\ & \text { OOc } \end{aligned}$	110	```STD_Betweenness_Ang_WI_R50 O0c```
111	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 5000c } \end{aligned}$	111	$\begin{aligned} & \text { MEAN_TPBetweenness_Ang_WI } \\ & \text { _R5000c } \end{aligned}$	111	```MIN_TPBetweenness_Ang_WI_R 5000c```	111	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 5000c } \end{aligned}$	111	```STD_TPBetweenness_Ang_WI_R 5000c```
112	TPDestination_Ang_WI_R5 000c	112	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 5000c } \end{aligned}$	112	```MIN_TPDestination_Ang_WI_R50 00c```	112	MAX_TPDestination_Ang_WI_R5 000c	112	```STD_TPDestination_Ang_WI_R50 O0c```
113	Links_R5000c	113	MEAN_Links_R5000c	113	MIN_Links_R5000c	113	MAX_Links_R5000c	113	STD_Links_R5000c
114	Length_R5000c	114	MEAN_Length_R5000c	114	MIN_Length_R5000c	114	MAX_Length_R5000c	114	STD_Length_R5000c
115	Ang_Dist_R5000c	115	MEAN_Ang_Dist_R5000c	115	MIN_Ang_Dist_R5000c	115	MAX_Ang_Dist_R5000c	115	STD_Ang_Dist_R5000c
116	Weight_WI_R5000c	116	MEAN_Weight_WI_R5000c	116	MIN_Weight_WI_R5000c	116	MAX_Weight_WI_R5000c	116	STD_Weight_WI_R5000c

117	MeanGeoLen_Ang_WI_R50 00c	117	MEAN_MeanGeoLen_Ang_WI_R 5000c	117	MIN_MeanGeoLen_Ang_WI_R50 00 c	117	MAX_MeanGeoLen_Ang_WI_R50 OOC	117	STD_MeanGeoLen_Ang_WI_R50 OOc
118	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R5 } \\ & \text { 000c } \end{aligned}$	118	```MEAN_Mean_Crow_Flight_WI_R 5000c```	118	```MIN_Mean_Crow_Flight_WI_R50 00c```	118	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R5 } \\ & \text { 000c } \end{aligned}$	118	$\begin{aligned} & \hline \text { STD_Mean_Crow_Flight_WI_R50 } \\ & \text { 00c } \end{aligned}$
119	Diversion_Ratio_Ang_WI_R 5000c	119	MEAN_Diversion_Ratio_Ang_WI _R5000c	119	```MIN_Diversion_Ratio_Ang_WI_R 5000c```	119	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & \text { 5000c } \end{aligned}$	119	```STD_Diversion_Ratio_Ang_WI_R 5000c```
120	Convex_Hull_Area_R5000c	120	```MEAN_Convex_Hull_Area_R500 Oc```	120	MIN_Convex_Hull_Area_R5000c	120	MAX_Convex_Hull_Area_R5000c	120	STD_Convex_Hull_Area_R5000c
121	```Convex_Hull_Perimeter_R5 000c```	121	$\begin{aligned} & \text { MEAN_Convex_Hull_Perimeter_ } \\ & \text { R5000c } \end{aligned}$	121	```MIN_Convex_Hull_Perimeter_R5 000c```	121	```MAX_Convex_Hull_Perimeter_R5 000c```	121	```STD_Convex_Hull_Perimeter_R5 000c```
122	$\begin{aligned} & \text { Convex_Hull_Max_Radius_ } \\ & \text { R5000c } \end{aligned}$	122	MEAN_Convex_Hull_MEAN_Radi us_R5000c	122	MIN_Convex_Hull_Max_Radius_ R5000c	122	$\begin{aligned} & \hline \text { MAX_Convex_Hull_Max_Radius_ } \\ & \text { R5000c } \end{aligned}$	122	```STD_Convex_Hull_Max_Radius_R 5000c```
123	Convex_Hull_Bearing_R500 Oc	123	MEAN_Convex_Hull_Bearing_R5 000c	123	```MIN_Convex_Hull_Bearing_R500 Oc```	123	```MAX_Convex_Hull_Bearing_R500 Oc```	123	```STD_Convex_Hull_Bearing_R500 Oc```
124	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R5000c } \end{aligned}$	124	```MEAN_Convex_Hull_Shape_Inde x_R5000c```	124	```MIN_Convex_Hull_Shape_Index_ R5000c```	124	$\begin{aligned} & \text { MAX_Convex_Hull_Shape_Index } \\ & \text { _R5000c } \end{aligned}$	124	```STD_Convex_Hull_Shape_Index_ R5000c```
125	$\begin{aligned} & \text { Mean_Ang_Dist_WI_R7500 } \\ & \text { c } \end{aligned}$	125	```MEAN_Mean_Ang_Dist_WI_R75 OOc```	125	$\begin{aligned} & \text { MIN_Mean_Ang_Dist_WI_R7500 } \\ & \text { c } \end{aligned}$	125	$\begin{aligned} & \text { MAX_Mean_Ang_Dist_WI_R7500 } \\ & \text { c } \end{aligned}$	125	STD_Mean_Ang_Dist_WI_R7500c
126	NetQuantPD_Ang_WI_R75 00c	126	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R7 } \\ & \text { 500c } \end{aligned}$	126	```MIN_NetQuantPD_Ang_WI_R750 Oc```	126	$\begin{aligned} & \hline \text { MAX_NetQuantPD_Ang_WI_R75 } \\ & \text { 00c } \end{aligned}$	126	```STD_NetQuantPD_Ang_WI_R750 Oc```
127	Betweenness_Ang_WI_R75 00c	127	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 7500c } \end{aligned}$	127	```MIN_Betweenness_Ang_WI_R75 00c```	127	```MAX_Betweenness_Ang_WI_R75 00c```	127	```STD_Betweenness_Ang_WI_R75 00c```
128	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 7500c } \end{aligned}$	128	MEAN_TPBetweenness_Ang_WI _R7500c	128	$\begin{aligned} & \hline \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 7500c } \end{aligned}$	128	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & 7500 \mathrm{c} \end{aligned}$	128	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 7500c } \end{aligned}$
129	TPDestination_Ang_WI_R7 500c	129	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & 7500 \mathrm{c} \end{aligned}$	129	```MIN_TPDestination_Ang_WI_R75 00c```	129	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R7 } \\ & \text { 500c } \end{aligned}$	129	$\begin{aligned} & \text { STD_TPDestination_Ang_WI_R75 } \\ & \text { 00c } \end{aligned}$
130	Links_R7500c	130	MEAN_Links_R7500c	130	MIN_Links_R7500c	130	MAX_Links_R7500c	130	STD_Links_R7500c
131	Length_R7500c	131	MEAN_Length_R7500c	131	MIN_Length_R7500c	131	MAX_Length_R7500c	131	STD_Length_R7500c
132	Ang_Dist_R7500c	132	MEAN_Ang_Dist_R7500c	132	MIN_Ang_Dist_R7500c	132	MAX_Ang_Dist_R7500c	132	STD_Ang_Dist_R7500c
133	Weight_WI_R7500c	133	MEAN_Weight_WI_R7500c	133	MIN_Weight_WI_R7500c	133	MAX_Weight_WI_R7500c	133	STD_Weight_WI_R7500c
134	```MeanGeoLen_Ang_WI_R75 00c```	134	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & \text { 7500c } \end{aligned}$	134	```MIN_MeanGeoLen_Ang_WI_R75 00c```	134	```MAX_MeanGeoLen_Ang_WI_R75 OOc```	134	```STD_MeanGeoLen_Ang_WI_R75 00c```
135	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R7 } \\ & \text { 500c } \end{aligned}$	135	$\begin{aligned} & \hline \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 7500 \text { c } \end{aligned}$	135	```MIN_Mean_Crow_Flight_WI_R75 00c```	135	$\begin{aligned} & \hline \text { MAX_Mean_Crow_Flight_WI_R7 } \\ & \text { 500c } \end{aligned}$	135	```STD_Mean_Crow_Flight_WI_R75 O0c```
136	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 7500c } \end{aligned}$	136	MEAN_Diversion_Ratio_Ang_WI _R7500c	136	$\begin{aligned} & \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 7500c } \end{aligned}$	136	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & 7500 \mathrm{c} \end{aligned}$	136	```STD_Diversion_Ratio_Ang_WI_R 7500c```
137	Convex_Hull_Area_R7500c	137	MEAN_Convex_Hull_Area_R750 Oc	137	MIN_Convex_Hull_Area_R7500c	137	MAX_Convex_Hull_Area_R7500c	137	STD_Convex_Hull_Area_R7500c
138	```Convex_Hull_Perimeter_R7 500c```	138	MEAN_Convex_Hull_Perimeter_ R7500c	138	```MIN_Convex_Hull_Perimeter_R7 500c```	138	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R7 } \\ & \text { 500c } \end{aligned}$	138	$\begin{aligned} & \text { STD_Convex_Hull_Perimeter_R7 } \\ & \text { 500c } \end{aligned}$
139	Convex_Hull_Max_Radius_ R7500c	139	MEAN_Convex_Hull_MEAN_Radi us_R7500c	139	MIN_Convex_Hull_Max_Radius_ R7500c	139	MAX_Convex_Hull_Max_Radius_ R7500c	139	```STD_Convex_Hull_Max_Radius_R 7500c```

140	$\begin{aligned} & \text { Convex_Hull_Bearing_R750 } \\ & \text { Oc } \end{aligned}$	140	```MEAN_Convex_Hull_Bearing_R7 500c```	140	```MIN_Convex_Hull_Bearing_R750 Oc```	140	$\begin{aligned} & \text { MAX_Convex_Hull_Bearing_R750 } \\ & \text { Oc } \end{aligned}$	140	```STD_Convex_Hull_Bearing_R750 Oc```
141	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R7500c } \end{aligned}$	141	MEAN_Convex_Hull_Shape_Inde X R 7500 c	141	$\begin{aligned} & \text { MIN_Convex_Hull_Shape_Index_ } \\ & \text { R7500c } \end{aligned}$	141	MAX_Convex_Hull_Shape_Index _R7500c	141	$\begin{aligned} & \text { STD_Convex_Hull_Shape_Index_ } \\ & \text { R7500c } \end{aligned}$
142	```Mean_Ang_Dist_WI_R1000 Oc```	142	$\begin{aligned} & \text { MEAN_Mean_Ang_Dist_WI_R10 } \\ & \text { 000c } \end{aligned}$	142	```MIN_Mean_Ang_Dist_WI_R1000 Oc```	142	```MAX_Mean_Ang_Dist_WI_R1000 Oc```	142	```STD_Mean_Ang_Dist_WI_R1000 Oc```
143	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R10 } \\ & \text { 000c } \end{aligned}$	143	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R1 } \\ & \text { 0000c } \end{aligned}$	143	```MIN_NetQuantPD_Ang_WI_R100 00c```	143	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R10 } \\ & \text { 000c } \end{aligned}$	143	$\begin{aligned} & \text { STD_NetQuantPD_Ang_WI_R100 } \\ & \text { 00c } \end{aligned}$
144	Betweenness_Ang_WI_R10 000c	144	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & 10000 \mathrm{c} \end{aligned}$	144	```MIN_Betweenness_Ang_WI_R10 000c```	144	$\begin{aligned} & \text { MAX_Betweenness_Ang_WI_R10 } \\ & \text { 000c } \end{aligned}$	144	$\begin{aligned} & \hline \text { STD_Betweenness_Ang_WI_R10 } \\ & \text { 000c } \end{aligned}$
145	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 10000c } \end{aligned}$	145	$\begin{aligned} & \text { MEAN_TPBetweenness_Ang_WI } \\ & \text { _R10000c } \end{aligned}$	145	```MIN_TPBetweenness_Ang_WI_R 10000c```	145	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 10000c } \end{aligned}$	145	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 10000c } \end{aligned}$
146	TPDestination_Ang_WI_R1 0000c	146	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 10000c } \end{aligned}$	146	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R10 } \\ & \text { 000c } \end{aligned}$	146	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R1 } \\ & \text { 0000c } \end{aligned}$	146	```STD_TPDestination_Ang_WI_R10 000c```
147	Links_R10000c	147	MEAN_Links_R10000c	147	MIN_Links_R10000c	147	MAX_Links_R10000c	147	STD_Links_R10000c
148	Length_R10000c	148	MEAN_Length_R10000c	148	MIN_Length_R10000c	148	MAX_Length_R10000c	148	STD_Length_R10000c
149	Ang_Dist_R10000c	149	MEAN_Ang_Dist_R10000c	149	MIN_Ang_Dist_R10000c	149	MAX_Ang_Dist_R10000c	149	STD_Ang_Dist_R10000c
150	Weight_WI_R10000c	150	MEAN_Weight_WI_R10000c	150	MIN_Weight_WI_R10000c	150	MAX_Weight_WI_R10000c	150	STD_Weight_WI_R10000c
151	MeanGeoLen_Ang_WI_R10 000c	151	MEAN_MeanGeoLen_Ang_WI_R 10000 c	151	MIN_MeanGeoLen_Ang_WI_R10 000 c	151	MAX_MeanGeoLen_Ang_WI_R10 000c	151	$\begin{aligned} & \text { STD_MeanGeoLen_Ang_WI_R10 } \\ & \text { 000c } \end{aligned}$
152	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R1 } \\ & 0000 \text { c } \end{aligned}$	152	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 10000 \mathrm{c} \end{aligned}$	152	```MIN_Mean_Crow_Flight_WI_R10 000c```	152	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R1 } \\ & \text { 0000c } \end{aligned}$	152	$\begin{aligned} & \hline \text { STD_Mean_Crow_Flight_WI_R10 } \\ & \text { 000c } \end{aligned}$
153	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & 10000 \mathrm{c} \end{aligned}$	153	MEAN_Diversion_Ratio_Ang_WI _R10000c	153	```MIN_Diversion_Ratio_Ang_WI_R 10000c```	153	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & \text { 10000c } \end{aligned}$	153	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 10000c } \end{aligned}$
154	$\begin{aligned} & \text { Convex_Hull_Area_R10000 } \\ & \text { c } \end{aligned}$	154	MEAN_Convex_Hull_Area_R100 00c	154	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R10000 } \\ & \text { c } \end{aligned}$	154	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R10000 } \\ & \text { c } \end{aligned}$	154	STD_Convex_Hull_Area_R10000c
155	$\begin{aligned} & \text { Convex_Hull_Perimeter_R1 } \\ & \text { 0000c } \end{aligned}$	155	MEAN_Convex_Hull_Perimeter_ R10000c	155	```MIN_Convex_Hull_Perimeter_R1 0000c```	155	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R1 } \\ & 0000 \mathrm{c} \end{aligned}$	155	```STD_Convex_Hull_Perimeter_R1 0000c```
156	Convex_Hull_Max_Radius_ R10000c	156	MEAN_Convex_Hull_MEAN_Radi us_R10000c	156	MIN_Convex_Hull_Max_Radius_ R10000c	156	MAX_Convex_Hull_Max_Radius_ R10000c	156	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 10000c } \end{aligned}$
157	$\begin{aligned} & \text { Convex_Hull_Bearing_R100 } \\ & \text { 00c } \end{aligned}$	157	$\begin{aligned} & \hline \text { MEAN_Convex_Hull_Bearing_R1 } \\ & 0000 \mathrm{c} \end{aligned}$	157	$\begin{aligned} & \text { MIN_Convex_Hull_Bearing_R100 } \\ & \text { 00c } \end{aligned}$	157	$\begin{aligned} & \text { MAX_Convex_Hull_Bearing_R100 } \\ & \text { 00c } \end{aligned}$	157	$\begin{aligned} & \hline \text { STD_Convex_Hull_Bearing_R100 } \\ & \text { 00c } \end{aligned}$
158	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R10000c } \\ & \hline \end{aligned}$	158	MEAN_Convex_Hull_Shape_Inde x_R10000c	158	MIN_Convex_Hull_Shape_Index_ R10000c	158	$\begin{aligned} & \text { MAX_Convex_Hull_Shape_Index } \\ & \text { _R10000c } \end{aligned}$	158	```STD_Convex_Hull_Shape_Index_ R10000c```
159	```Mean_Ang_Dist_WI_R1250 Oc```	159	```MEAN_Mean_Ang_Dist_WI_R12 500c```	159	```MIN_Mean_Ang_Dist_WI_R1250 Oc```	159	```MAX_Mean_Ang_Dist_WI_R1250 Oc```	159	```STD_Mean_Ang_Dist_WI_R1250 Oc```
160	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R12 } \\ & \text { 500c } \end{aligned}$	160	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R1 } \\ & 2500 \mathrm{c} \end{aligned}$	160	$\begin{aligned} & \text { MIN_NetQuantPD_Ang_WI_R125 } \\ & \text { 00c } \end{aligned}$	160	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R12 } \\ & \text { 500c } \end{aligned}$	160	$\begin{aligned} & \text { STD_NetQuantPD_Ang_WI_R125 } \\ & \text { 00c } \end{aligned}$
161	$\begin{aligned} & \text { Betweenness_Ang_WI_R12 } \\ & \text { 500c } \end{aligned}$	161	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & 12500 \mathrm{c} \end{aligned}$	161	```MIN_Betweenness_Ang_WI_R12 500c```	161	$\begin{aligned} & \text { MAX_Betweenness_Ang_WI_R12 } \\ & \text { 500c } \end{aligned}$	161	```STD_Betweenness_Ang_WI_R12 500c```
162	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 12500c } \end{aligned}$	162	$\begin{aligned} & \text { MEAN_TPBetweenness_Ang_WI } \\ & \text { _R12500c } \end{aligned}$	162	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & 12500 \mathrm{c} \end{aligned}$	162	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 12500c } \end{aligned}$	162	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 12500c } \end{aligned}$

163	$\begin{aligned} & \text { TPDestination_Ang_WI_R1 } \\ & \text { 2500c } \end{aligned}$	163	MEAN_TPDestination_Ang_WI_R 12500c	163	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R12 } \\ & \text { 500c } \end{aligned}$	163	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R1 } \\ & 2500 \mathrm{c} \end{aligned}$	163	$\begin{aligned} & \text { STD_TPDestination_Ang_WI_R12 } \\ & \text { 500c } \end{aligned}$
164	Links_R12500c	164	MEAN_Links_R12500c	164	MIN_Links_R12500c	164	MAX_Links_R12500c	164	STD_Links_R12500c
165	Length_R12500c	165	MEAN_Length_R12500c	165	MIN_Length_R12500c	165	MAX_Length_R12500c	165	STD_Length_R12500c
166	Ang_Dist_R12500c	166	MEAN_Ang_Dist_R12500c	166	MIN_Ang_Dist_R12500c	166	MAX_Ang_Dist_R12500c	166	STD_Ang_Dist_R12500c
167	Weight_WI_R12500c	167	MEAN_Weight_WI_R12500c	167	MIN_Weight_WI_R12500c	167	MAX_Weight_WI_R12500c	167	STD_Weight_WI_R12500c
168	MeanGeoLen_Ang_WI_R12 500c	168	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & 12500 \mathrm{c} \end{aligned}$	168	MIN_MeanGeoLen_Ang_WI_R12 500c	168	MAX_MeanGeoLen_Ang_WI_R12 500c	168	$\begin{aligned} & \text { STD_MeanGeoLen_Ang_WI_R12 } \\ & \text { 500c } \end{aligned}$
169	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R1 } \\ & 2500 \text { c } \end{aligned}$	169	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 12500 \mathrm{c} \end{aligned}$	169	```MIN_Mean_Crow_Flight_WI_R12 500c```	169	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R1 } \\ & 2500 \mathrm{c} \end{aligned}$	169	$\begin{aligned} & \text { STD_Mean_Crow_Flight_WI_R12 } \\ & \text { 500c } \end{aligned}$
170	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 12500c } \end{aligned}$	170	MEAN_Diversion_Ratio_Ang_WI R12500c	170	$\begin{aligned} & \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 12500c } \end{aligned}$	170	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & 12500 \text { c } \end{aligned}$	170	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 12500c } \end{aligned}$
171	```Convex_Hull_Area_R12500 c```	171	MEAN_Convex_Hull_Area_R125 OOc	171	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R12500 } \\ & \text { c } \end{aligned}$	171	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R12500 } \\ & \text { c } \end{aligned}$	171	STD_Convex_Hull_Area_R12500c
172	$\begin{aligned} & \text { Convex_Hull_Perimeter_R1 } \\ & \text { 2500c } \end{aligned}$	172	MEAN_Convex_Hull_Perimeter_ R12500c	172	$\begin{aligned} & \text { MIN_Convex_Hull_Perimeter_R1 } \\ & \text { 2500c } \end{aligned}$	172	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R1 } \\ & \text { 2500c } \end{aligned}$	172	$\begin{aligned} & \text { STD_Convex_Hull_Perimeter_R1 } \\ & \text { 2500c } \end{aligned}$
173	Convex_Hull_Max_Radius_ R12500c	173	MEAN_Convex_Hull_MEAN_Radi us_R12500c	173	MIN_Convex_Hull_Max_Radius_ R12500c	173	MAX_Convex_Hull_Max_Radius_ R12500c	173	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 12500c } \end{aligned}$
174	```Convex_Hull_Bearing_R125 00c```	174	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R1 } \\ & 2500 \text { c } \end{aligned}$	174	```MIN_Convex_Hull_Bearing_R125 00c```	174	```MAX_Convex_Hull_Bearing_R125 00c```	174	$\begin{aligned} & \text { STD_Convex_Hull_Bearing_R125 } \\ & \text { 00c } \end{aligned}$
175	Convex_Hull_Shape_Index_ R12500c	175	MEAN_Convex_Hull_Shape_Inde x_R12500c	175	MIN_Convex_Hull_Shape_Index_ R12500c	175	$\begin{aligned} & \text { MAX_Convex_Hull_Shape_Index } \\ & \text { _R12500c } \end{aligned}$	175	$\begin{aligned} & \text { STD_Convex_Hull_Shape_Index_ } \\ & \text { R12500c } \end{aligned}$
176	```Mean_Ang_Dist_WI_R1500 Oc```	176	MEAN_Mean_Ang_Dist_WI_R15 000c	176	```MIN_Mean_Ang_Dist_WI_R1500 Oc```	176	```MAX_Mean_Ang_Dist_WI_R1500 Oc```	176	```STD_Mean_Ang_Dist_WI_R1500 Oc```
177	NetQuantPD_Ang_WI_R15 $000 \mathrm{c}$	177	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R1 } \\ & \text { 5000c } \end{aligned}$	177	```MIN_NetQuantPD_Ang_WI_R150 00c```	177	$\begin{aligned} & \hline \text { MAX_NetQuantPD_Ang_WI_R15 } \\ & \text { 000c } \end{aligned}$	177	```STD_NetQuantPD_Ang_WI_R150 00c```
178	Betweenness_Ang_WI_R15 000c	178	MEAN_Betweenness_Ang_WI_R 15000c	178	```MIN_Betweenness_Ang_WI_R15 000c```	178	$\begin{aligned} & \text { MAX_Betweenness_Ang_WI_R15 } \\ & \text { 000c } \end{aligned}$	178	```STD_Betweenness_Ang_WI_R15 000c```
179	TPBetweenness_Ang_WI_R 15000c	179	MEAN_TPBetweenness_Ang_WI R15000c	179	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 15000c } \end{aligned}$	179	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 15000c } \end{aligned}$	179	$\begin{aligned} & \hline \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 15000c } \end{aligned}$
180	$\begin{aligned} & \text { TPDestination_Ang_WI_R1 } \\ & \text { 5000c } \end{aligned}$	180	MEAN_TPDestination_Ang_WI_R 15000c	180	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R15 } \\ & \text { 000c } \end{aligned}$	180	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R1 } \\ & \text { 5000c } \end{aligned}$	180	$\begin{aligned} & \hline \text { STD_TPDestination_Ang_WI_R15 } \\ & \text { 000c } \end{aligned}$
181	Links_R15000c	181	MEAN_Links_R15000c	181	MIN_Links_R15000c	181	MAX_Links_R15000c	181	STD_Links_R15000c
182	Length_R15000c	182	MEAN_Length_R15000c	182	MIN_Length_R15000c	182	MAX_Length_R15000c	182	STD_Length_R15000c
183	Ang_Dist_R15000c	183	MEAN_Ang_Dist_R15000c	183	MIN_Ang_Dist_R15000c	183	MAX_Ang_Dist_R15000c	183	STD_Ang_Dist_R15000c
184	Weight_WI_R15000c	184	MEAN_Weight_WI_R15000c	184	MIN_Weight_WI_R15000c	184	MAX_Weight_WI_R15000c	184	STD_Weight_WI_R15000c
185	MeanGeoLen_Ang_WI_R15 000c	185	MEAN_MeanGeoLen_Ang_WI_R 15000c	185	MIN_MeanGeoLen_Ang_WI_R15 000c	185	MAX_MeanGeoLen_Ang_WI_R15 000c	185	$\begin{aligned} & \text { STD_MeanGeoLen_Ang_WI_R15 } \\ & \text { 000c } \end{aligned}$
186	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R1 } \\ & \text { 5000c } \end{aligned}$	186	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 15000 \mathrm{c} \end{aligned}$	186	$\begin{aligned} & \text { MIN_Mean_Crow_Flight_WI_R15 } \\ & \text { 000c } \end{aligned}$	186	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R1 } \\ & \text { 5000c } \end{aligned}$	186	```STD_Mean_Crow_Flight_WI_R15 000c```

187	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 15000c } \end{aligned}$	187	MEAN_Diversion_Ratio_Ang_WI R15000c	187	$\begin{aligned} & \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 15000c } \end{aligned}$	187	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & \text { 15000c } \end{aligned}$	187	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 15000c } \end{aligned}$
188	$\begin{aligned} & \text { Convex_Hull_Area_R15000 } \\ & \text { c } \end{aligned}$	188	MEAN_Convex_Hull_Area_R150 OOc	188	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R15000 } \\ & \text { c } \end{aligned}$	188	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R15000 } \\ & \text { c } \end{aligned}$	188	STD_Convex_Hull_Area_R15000c
189	$\begin{aligned} & \text { Convex_Hull_Perimeter_R1 } \\ & 5000 \mathrm{c} \end{aligned}$	189	MEAN_Convex_Hull_Perimeter_ R15000c	189	```MIN_Convex_Hull_Perimeter_R1 5000c```	189	```MAX_Convex_Hull_Perimeter_R1 5000c```	189	```STD_Convex_Hull_Perimeter_R1 5000c```
190	Convex_Hull_Max_Radius_ R15000c	190	MEAN_Convex_Hull_MEAN_Radi us_R15000c	190	MIN_Convex_Hull_Max_Radius_ R15000c	190	MAX_Convex_Hull_Max_Radius_ R15000c	190	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 15000c } \end{aligned}$
191	$\begin{aligned} & \hline \text { Convex_Hull_Bearing_R150 } \\ & \text { 00c } \end{aligned}$	191	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R1 } \\ & \text { 5000c } \end{aligned}$	191	$\begin{aligned} & \hline \text { MIN_Convex_Hull_Bearing_R150 } \\ & \text { 00c } \end{aligned}$	191	$\begin{aligned} & \text { MAX_Convex_Hull_Bearing_R150 } \\ & \text { 00c } \end{aligned}$	191	$\begin{aligned} & \hline \text { STD_Convex_Hull_Bearing_R150 } \\ & \text { 00c } \end{aligned}$
192	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R15000c } \end{aligned}$	192	MEAN_Convex_Hull_Shape_Inde x_R15000c	192	MIN_Convex_Hull_Shape_Index_ R15000c	192	$\begin{aligned} & \text { MAX_Convex_Hull_Shape_Index } \\ & \text { _R15000c } \end{aligned}$	192	```STD_Convex_Hull_Shape_Index_ R15000c```
193	```Mean_Ang_Dist_WI_R1750 Oc```	193	```MEAN_Mean_Ang_Dist_WI_R17 500c```	193	```MIN_Mean_Ang_Dist_WI_R1750 Oc```	193	```MAX_Mean_Ang_Dist_WI_R1750 Oc```	193	```STD_Mean_Ang_Dist_WI_R1750 Oc```
194	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R17 } \\ & \text { 500c } \end{aligned}$	194	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R1 } \\ & \text { 7500c } \end{aligned}$	194	```MIN_NetQuantPD_Ang_WI_R175 00c```	194	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R17 } \\ & \text { 500c } \end{aligned}$	194	$\begin{aligned} & \text { STD_NetQuantPD_Ang_WI_R175 } \\ & \text { 00c } \end{aligned}$
195	$\begin{aligned} & \text { Betweenness_Ang_WI_R17 } \\ & \text { 500c } \end{aligned}$	195	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & 17500 \text { c } \\ & \hline \end{aligned}$	195	```MIN_Betweenness_Ang_WI_R17 500c```	195	$\begin{aligned} & \text { MAX_Betweenness_Ang_WI_R17 } \\ & \text { 500c } \end{aligned}$	195	```STD_Betweenness_Ang_WI_R17 500c```
196	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 17500c } \end{aligned}$	196	MEAN_TPBetweenness_Ang_WI _R17500c	196	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & 17500 \mathrm{c} \end{aligned}$	196	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 17500c } \end{aligned}$	196	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 17500c } \end{aligned}$
197	TPDestination_Ang_WI_R1 7500c	197	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & 17500 \mathrm{c} \\ & \hline \end{aligned}$	197	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R17 } \\ & \text { 500c } \end{aligned}$	197	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R1 } \\ & \text { 7500c } \end{aligned}$	197	```STD_TPDestination_Ang_WI_R17 500c```
198	Links_R17500c	198	MEAN_Links_R17500c	198	MIN_Links_R17500c	198	MAX_Links_R17500c	198	STD_Links_R17500c
199	Length_R17500c	199	MEAN_Length_R17500c	199	MIN_Length_R17500c	199	MAX_Length_R17500c	199	STD_Length_R17500c
200	Ang_Dist_R17500c	200	MEAN_Ang_Dist_R17500c	200	MIN_Ang_Dist_R17500c	200	MAX_Ang_Dist_R17500c	200	STD_Ang_Dist_R17500c
201	Weight_WI_R17500c	201	MEAN_Weight_WI_R17500c	201	MIN_Weight_WI_R17500c	201	MAX_Weight_WI_R17500c	201	STD_Weight_WI_R17500c
202	```MeanGeoLen_Ang_WI_R17 500c```	202	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & 17500 \mathrm{c} \end{aligned}$	202	```MIN_MeanGeoLen_Ang_WI_R17 500c```	202	MAX_MeanGeoLen_Ang_WI_R17 500c	202	```STD_MeanGeoLen_Ang_WI_R17 500c```
203	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R1 } \\ & 7500 \text { c } \end{aligned}$	203	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & \text { 17500c } \end{aligned}$	203	```MIN_Mean_Crow_Flight_WI_R17 500c```	203	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R1 } \\ & 7500 \mathrm{c} \end{aligned}$	203	```STD_Mean_Crow_Flight_WI_R17 500c```
204	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 17500c } \end{aligned}$	204	MEAN_Diversion_Ratio_Ang_WI _R17500c	204	$\begin{aligned} & \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 17500c } \end{aligned}$	204	MAX_Diversion_Ratio_Ang_WI_R $17500 \mathrm{c}$	204	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 17500c } \end{aligned}$
205	$\begin{aligned} & \text { Convex_Hull_Area_R17500 } \\ & \text { c } \end{aligned}$	205	```MEAN_Convex_Hull_Area_R175 OOc```	205	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R17500 } \\ & \text { c } \end{aligned}$	205	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R17500 } \\ & \text { c } \end{aligned}$	205	STD_Convex_Hull_Area_R17500c
206	$\begin{aligned} & \hline \text { Convex_Hull_Perimeter_R1 } \\ & 7500 \mathrm{c} \end{aligned}$	206	MEAN_Convex_Hull_Perimeter_ R17500c	206	```MIN_Convex_Hull_Perimeter_R1 7500c```	206	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R1 } \\ & 7500 \mathrm{c} \end{aligned}$	206	$\begin{aligned} & \hline \text { STD_Convex_Hull_Perimeter_R1 } \\ & \text { 7500c } \end{aligned}$
207	Convex_Hull_Max_Radius_ R17500c	207	MEAN_Convex_Hull_MEAN_Radi us_R17500c	207	MIN_Convex_Hull_Max_Radius_ R17500c	207	MAX_Convex_Hull_Max_Radius_ R17500c	207	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 17500c } \end{aligned}$
208	```Convex_Hull_Bearing_R175 00c```	208	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R1 } \\ & \text { 7500c } \end{aligned}$	208	MIN_Convex_Hull_Bearing_R175 00c	208	MAX_Convex_Hull_Bearing_R175 OOc	208	```STD_Convex_Hull_Bearing_R175 00c```
209	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R17500c } \end{aligned}$	209	MEAN_Convex_Hull_Shape_Inde x_R17500c	209	$\begin{aligned} & \text { MIN_Convex_Hull_Shape_Index_ } \\ & \text { R17500c } \end{aligned}$	209	MAX_Convex_Hull_Shape_Index _R17500c	209	$\begin{aligned} & \text { STD_Convex_Hull_Shape_Index_ } \\ & \text { R17500c } \end{aligned}$

210	```Mean_Ang_Dist_WI_R2000 Oc```	210	MEAN_Mean_Ang_Dist_WI_R20 000c	210	```MIN_Mean_Ang_Dist_WI_R2000 Oc```	210	```MAX_Mean_Ang_Dist_WI_R2000 Oc```	210	```STD_Mean_Ang_Dist_WI_R2000 Oc```
211	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R20 } \\ & \text { 000c } \end{aligned}$	211	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R2 } \\ & \text { 0000c } \end{aligned}$	211	```MIN_NetQuantPD_Ang_WI_R200 00c```	211	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R20 } \\ & \text { 000c } \end{aligned}$	211	```STD_NetQuantPD_Ang_WI_R200 00c```
212	Betweenness_Ang_WI_R20 000c	212	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$	212	```MIN_Betweenness_Ang_WI_R2O 000c```	212	```MAX_Betweenness_Ang_WI_R2O 000c```	212	```STD_Betweenness_Ang_WI_R2O 000c```
213	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$	213	MEAN_TPBetweenness_Ang_WI R20000c	213	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$	213	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$	213	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$
214	$\begin{aligned} & \text { TPDestination_Ang_WI_R2 } \\ & \text { 0000c } \end{aligned}$	214	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$	214	```MIN_TPDestination_Ang_WI_R2O 000c```	214	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R2 } \\ & \text { 0000c } \end{aligned}$	214	$\begin{aligned} & \hline \text { STD_TPDestination_Ang_WI_R20 } \\ & \text { 000c } \end{aligned}$
215	Links_R20000c	215	MEAN_Links_R20000c	215	MIN_Links_R20000c	215	MAX_Links_R20000c	215	STD_Links_R20000c
216	Length_R20000c	216	MEAN_Length_R20000c	216	MIN_Length_R20000c	216	MAX_Length_R20000c	216	STD_Length_R20000c
217	Ang_Dist_R20000c	217	MEAN_Ang_Dist_R20000c	217	MIN_Ang_Dist_R20000c	217	MAX_Ang_Dist_R20000c	217	STD_Ang_Dist_R20000c
218	Weight_WI_R20000c	218	MEAN_Weight_WI_R20000c	218	MIN_Weight_WI_R20000c	218	MAX_Weight_WI_R20000c	218	STD_Weight_WI_R20000c
219	MeanGeoLen_Ang_WI_R20 000c	219	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & 20000 \mathrm{c} \end{aligned}$	219	MIN_MeanGeoLen_Ang_WI_R20 000c	219	```MAX_MeanGeoLen_Ang_WI_R2O 000c```	219	```STD_MeanGeoLen_Ang_WI_R2O 000c```
220	Mean_Crow_Flight_WI_R2 0000c	220	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 20000 \mathrm{c} \end{aligned}$	220	$\begin{aligned} & \text { MIN_Mean_Crow_Flight_WI_R20 } \\ & \text { 000c } \end{aligned}$	220	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R2 } \\ & \text { 0000c } \end{aligned}$	220	$\begin{aligned} & \text { STD_Mean_Crow_Flight_WI_R20 } \\ & \text { 000c } \end{aligned}$
221	Diversion_Ratio_Ang_WI_R 20000c	221	MEAN_Diversion_Ratio_Ang_WI R20000c	221	$\begin{aligned} & \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$	221	MAX_Diversion_Ratio_Ang_WI_R 20000c	221	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 20000c } \end{aligned}$
222	```Convex_Hull_Area_R20000 c```	222	```MEAN_Convex_Hull_Area_R200 00c```	222	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R20000 } \\ & \text { c } \end{aligned}$	222	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R20000 } \\ & \text { c } \end{aligned}$	222	STD_Convex_Hull_Area_R20000c
223	Convex_Hull_Perimeter_R2 0000c	223	MEAN_Convex_Hull_Perimeter_ R20000c	223	MIN_Convex_Hull_Perimeter_R2 0000c	223	MAX_Convex_Hull_Perimeter_R2 0000c	223	```STD_Convex_Hull_Perimeter_R2 0000c```
224	Convex_Hull_Max_Radius_ R20000c	224	MEAN_Convex_Hull_MEAN_Radi us_R20000c	224	MIN_Convex_Hull_Max_Radius_ R20000c	224	MAX_Convex_Hull_Max_Radius_ R20000c	224	```STD_Convex_Hull_Max_Radius_R 20000c```
225	```Convex_Hull_Bearing_R200 00c```	225	MEAN_Convex_Hull_Bearing_R2 0000c	225	MIN_Convex_Hull_Bearing_R200 00c	225	```MAX_Convex_Hull_Bearing_R200 OOc```	225	```STD_Convex_Hull_Bearing_R200 OOc```
226	Convex_Hull_Shape_Index_ R20000c	226	MEAN_Convex_Hull_Shape_Inde x_R20000c	226	MIN_Convex_Hull_Shape_Index_ R20000c	226	MAX_Convex_Hull_Shape_Index _R20000c	226	STD_Convex_Hull_Shape_Index_ R20000c
227	```Mean_Ang_Dist_WI_R2500 Oc```	227	```MEAN_Mean_Ang_Dist_WI_R25 000c```	227	```MIN_Mean_Ang_Dist_WI_R2500 Oc```	227	```MAX_Mean_Ang_Dist_WI_R2500 Oc```	227	```STD_Mean_Ang_Dist_WI_R2500 Oc```
228	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R25 } \\ & \text { 000c } \end{aligned}$	228	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R2 } \\ & \text { 5000c } \end{aligned}$	228	```MIN_NetQuantPD_Ang_WI_R250 00c```	228	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R25 } \\ & \text { 000c } \end{aligned}$	228	```STD_NetQuantPD_Ang_WI_R250 00c```
229	Betweenness_Ang_WI_R25 000c	229	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 25000c } \end{aligned}$	229	MIN_Betweenness_Ang_WI_R25 000c	229	MAX_Betweenness_Ang_WI_R25 000c	229	$\begin{aligned} & \text { STD_Betweenness_Ang_WI_R25 } \\ & \text { 000c } \end{aligned}$
230	TPBetweenness_Ang_WI_R 25000c	230	MEAN_TPBetweenness_Ang_WI R25000c	230	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 25000c } \end{aligned}$	230	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 25000c } \end{aligned}$	230	$\begin{aligned} & \hline \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 25000c } \end{aligned}$
231	$\begin{aligned} & \text { TPDestination_Ang_WI_R2 } \\ & \text { 5000c } \end{aligned}$	231	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & 25000 \mathrm{c} \end{aligned}$	231	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R25 } \\ & \text { 000c } \end{aligned}$	231	$\begin{aligned} & \hline \text { MAX_TPDestination_Ang_WI_R2 } \\ & \text { 5000c } \end{aligned}$	231	$\begin{aligned} & \hline \text { STD_TPDestination_Ang_WI_R25 } \\ & \text { 000c } \end{aligned}$
232	Links_R25000c	232	MEAN_Links_R25000c	232	MIN_Links_R25000c	232	MAX_Links_R25000c	232	STD_Links_R25000c
233	Length_R25000c	233	MEAN_Length_R25000c	233	MIN_Length_R25000c	233	MAX_Length_R25000c	233	STD_Length_R25000c

234	Ang_Dist_R25000c	234	MEAN_Ang_Dist_R25000c	234	MIN_Ang_Dist_R25000c	234	MAX_Ang_Dist_R25000c	234	STD_Ang_Dist_R25000c
235	Weight_WI_R25000c	235	MEAN_Weight_WI_R25000c	235	MIN_Weight_WI_R25000c	235	MAX_Weight_WI_R25000c	235	STD_Weight_WI_R25000c
236	$\begin{aligned} & \text { MeanGeoLen_Ang_WI_R25 } \\ & \text { 000c } \end{aligned}$	236	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & 25000 \mathrm{c} \end{aligned}$	236	MIN_MeanGeoLen_Ang_WI_R25 000c	236	MAX_MeanGeoLen_Ang_WI_R25 000c	236	$\begin{aligned} & \text { STD_MeanGeoLen_Ang_WI_R25 } \\ & \text { 000c } \end{aligned}$
237	```Mean_Crow_Flight_WI_R2 5000c```	237	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & \text { 25000c } \end{aligned}$	237	```MIN_Mean_Crow_Flight_WI_R25 000c```	237	```MAX_Mean_Crow_Flight_WI_R2 5000c```	237	```STD_Mean_Crow_Flight_WI_R25 000c```
238	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 25000c } \end{aligned}$	238	MEAN_Diversion_Ratio_Ang_WI R25000c	238	MIN_Diversion_Ratio_Ang_WI_R 25000c	238	MAX_Diversion_Ratio_Ang_WI_R 25000c	238	STD_Diversion_Ratio_Ang_WI_R 25000c
239	$\begin{aligned} & \text { Convex_Hull_Area_R25000 } \\ & \text { c } \end{aligned}$	239	```MEAN_Convex_Hull_Area_R250 OOc```	239	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R25000 } \\ & \text { c } \end{aligned}$	239	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R25000 } \\ & \text { c } \end{aligned}$	239	STD_Convex_Hull_Area_R25000c
240	$\begin{aligned} & \text { Convex_Hull_Perimeter_R2 } \\ & \text { 5000c } \end{aligned}$	240	MEAN_Convex_Hull_Perimeter_ R25000c	240	```MIN_Convex_Hull_Perimeter_R2 5000c```	240	```MAX_Convex_Hull_Perimeter_R2 5000c```	240	```STD_Convex_Hull_Perimeter_R2 5000c```
241	Convex_Hull_Max_Radius_ R25000c	241	MEAN_Convex_Hull_MEAN_Radi us R25000c	241	MIN_Convex_Hull_Max_Radius_ R25000c	241	MAX_Convex_Hull_Max_Radius_ R25000c	241	$\begin{aligned} & \text { STD_Convex_Hull_Max_Radius_R } \\ & \text { 25000c } \end{aligned}$
242	```Convex_Hull_Bearing_R250 00c```	242	$\begin{aligned} & \hline \text { MEAN_Convex_Hull_Bearing_R2 } \\ & 5000 \mathrm{c} \end{aligned}$	242	$\begin{aligned} & \hline \text { MIN_Convex_Hull_Bearing_R250 } \\ & \text { 00c } \end{aligned}$	242	MAX_Convex_Hull_Bearing_R250 $00 \mathrm{c}$	242	$\begin{aligned} & \hline \text { STD_Convex_Hull_Bearing_R250 } \\ & \text { 00c } \end{aligned}$
243	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R25000c } \end{aligned}$	243	MEAN_Convex_Hull_Shape_Inde x_R25000c	243	```MIN_Convex_Hull_Shape_Index_ R25000c```	243	MAX_Convex_Hull_Shape_Index _R25000c	243	$\begin{aligned} & \hline \text { STD_Convex_Hull_Shape_Index_ } \\ & \text { R25000c } \\ & \hline \end{aligned}$
244	```Mean_Ang_Dist_WI_R3000 Oc```	244	MEAN_Mean_Ang_Dist_WI_R30 000c	244	```MIN_Mean_Ang_Dist_WI_R3000 Oc```	244	```MAX_Mean_Ang_Dist_WI_R3000 Oc```	244	```STD_Mean_Ang_Dist_WI_R3000 Oc```
245	NetQuantPD_Ang_WI_R30 000c	245	MEAN_NetQuantPD_Ang_WI_R3 0000c	245	```MIN_NetQuantPD_Ang_WI_R300 O0c```	245	```MAX_NetQuantPD_Ang_WI_R30 000c```	245	$\begin{aligned} & \text { STD_NetQuantPD_Ang_WI_R300 } \\ & \text { 00c } \end{aligned}$
246	$\begin{aligned} & \hline \text { Betweenness_Ang_WI_R30 } \\ & \text { 000c } \end{aligned}$	246	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & 30000 \mathrm{c} \end{aligned}$	246	```MIN_Betweenness_Ang_WI_R30 000c```	246	```MAX_Betweenness_Ang_WI_R30 000c```	246	$\begin{aligned} & \text { STD_Betweenness_Ang_WI_R30 } \\ & \text { 000c } \end{aligned}$
247	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & 30000 \mathrm{c} \end{aligned}$	247	MEAN_TPBetweenness_Ang_WI _R30000c	247	```MIN_TPBetweenness_Ang_WI_R 30000c```	247	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 30000c } \end{aligned}$	247	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & 30000 \mathrm{c} \end{aligned}$
248	TPDestination_Ang_WI_R3 0000c	248	MEAN_TPDestination_Ang_WI_R 30000c	248	$\begin{aligned} & \hline \text { MIN_TPDestination_Ang_WI_R30 } \\ & 000 \mathrm{c} \end{aligned}$	248	MAX_TPDestination_Ang_WI_R3 0000c	248	$\begin{aligned} & \hline \text { STD_TPDestination_Ang_WI_R30 } \\ & \text { 000c } \end{aligned}$
249	Links_R30000c	249	MEAN_Links_R30000c	249	MIN_Links_R30000c	249	MAX_Links_R30000c	249	STD_Links_R30000c
250	Length_R30000c	250	MEAN_Length_R30000c	250	MIN_Length_R30000c	250	MAX_Length_R30000c	250	STD_Length_R30000c
251	Ang_Dist_R30000c	251	MEAN_Ang_Dist_R30000c	251	MIN_Ang_Dist_R30000c	251	MAX_Ang_Dist_R30000c	251	STD_Ang_Dist_R30000c
252	Weight_WI_R30000c	252	MEAN_Weight_WI_R30000c	252	MIN_Weight_WI_R30000c	252	MAX_Weight_WI_R30000c	252	STD_Weight_WI_R30000c
253	MeanGeoLen_Ang_WI_R30 000 c	253	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & 30000 \mathrm{c} \end{aligned}$	253	MIN_MeanGeoLen_Ang_WI_R30 000c	253	MAX_MeanGeoLen_Ang_WI_R30 000c	253	STD_MeanGeoLen_Ang_WI_R30 000c
254	Mean_Crow_Flight_WI_R3 0000c	254	$\begin{aligned} & \hline \text { MEAN_Mean_Crow_Flight_WI_R } \\ & \text { 30000c } \end{aligned}$	254	```MIN_Mean_Crow_Flight_WI_R30 000c```	254	MAX_Mean_Crow_Flight_WI_R3 $0000 \mathrm{c}$	254	$\begin{aligned} & \hline \text { STD_Mean_Crow_Flight_WI_R30 } \\ & \text { 000c } \end{aligned}$
255	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & 30000 \mathrm{c} \end{aligned}$	255	MEAN_Diversion_Ratio_Ang_WI R30000c	255	MIN_Diversion_Ratio_Ang_WI_R 30000c	255	```MAX_Diversion_Ratio_Ang_WI_R 30000c```	255	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 30000c } \end{aligned}$
256	$\begin{aligned} & \text { Convex_Hull_Area_R30000 } \\ & \text { c } \end{aligned}$	256	$\begin{aligned} & \text { MEAN_Convex_Hull_Area_R300 } \\ & \text { OOc } \end{aligned}$	256	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R30000 } \\ & \text { c } \end{aligned}$	256	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R30000 } \\ & \text { c } \\ & \hline \end{aligned}$	256	STD_Convex_Hull_Area_R30000c
257	$\begin{aligned} & \text { Convex_Hull_Perimeter_R3 } \\ & 0000 \text { c } \end{aligned}$	257	MEAN_Convex_Hull_Perimeter_ R30000c	257	$\begin{aligned} & \hline \text { MIN_Convex_Hull_Perimeter_R3 } \\ & 0000 \mathrm{c} \end{aligned}$	257	$\begin{aligned} & \hline \text { MAX_Convex_Hull_Perimeter_R3 } \\ & 0000 \mathrm{c} \end{aligned}$	257	```STD_Convex_Hull_Perimeter_R3 0000c```

258	Convex_Hull_Max_Radius_ R30000c	258	MEAN_Convex_Hull_MEAN_Radi us_R30000c	258	MIN_Convex_Hull_Max_Radius_ R30000c	258	MAX_Convex_Hull_Max_Radius_ R30000c	258	```STD_Convex_Hull_Max_Radius_R 30000c```
259	$\begin{aligned} & \text { Convex_Hull_Bearing_R300 } \\ & \text { 00c } \end{aligned}$	259	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R3 } \\ & \text { 0000c } \end{aligned}$	259	```MIN_Convex_Hull_Bearing_R300 00c```	259	```MAX_Convex_Hull_Bearing_R300 OOc```	259	```STD_Convex_Hull_Bearing_R300 00c```
260	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R30000c } \end{aligned}$	260	MEAN_Convex_Hull_Shape_Inde x_R30000c	260	MIN_Convex_Hull_Shape_Index_ R30000c	260	$\begin{aligned} & \text { MAX_Convex_Hull_Shape_Index } \\ & \text { _R30000c } \end{aligned}$	260	STD_Convex_Hull_Shape_Index_ R30000c
261	$\begin{aligned} & \text { Mean_Ang_Dist_WI_R3500 } \\ & \text { Oc } \end{aligned}$	261	$\begin{aligned} & \hline \text { MEAN_Mean_Ang_Dist_WI_R35 } \\ & \text { 000c } \end{aligned}$	261	```MIN_Mean_Ang_Dist_WI_R3500 Oc```	261	```MAX_Mean_Ang_Dist_WI_R3500 Oc```	261	```STD_Mean_Ang_Dist_WI_R3500 Oc```
262	NetQuantPD_Ang_WI_R35 000c	262	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R3 } \\ & \text { 5000c } \end{aligned}$	262	```MIN_NetQuantPD_Ang_WI_R350 00c```	262	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R35 } \\ & \text { 000c } \end{aligned}$	262	$\begin{aligned} & \hline \text { STD_NetQuantPD_Ang_WI_R350 } \\ & \text { 00c } \end{aligned}$
263	$\begin{aligned} & \text { Betweenness_Ang_WI_R35 } \\ & \text { 000c } \end{aligned}$	263	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 35000c } \end{aligned}$	263	MIN_Betweenness_Ang_WI_R35 O00c	263	$\begin{aligned} & \hline \text { MAX_Betweenness_Ang_WI_R35 } \\ & \text { 000c } \end{aligned}$	263	$\begin{aligned} & \hline \text { STD_Betweenness_Ang_WI_R35 } \\ & \text { 000c } \end{aligned}$
264	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 35000c } \end{aligned}$	264	$\begin{aligned} & \text { MEAN_TPBetweenness_Ang_WI } \\ & \text { _R35000c } \end{aligned}$	264	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 35000c } \end{aligned}$	264	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 35000c } \end{aligned}$	264	```STD_TPBetweenness_Ang_WI_R 35000c```
265	$\begin{aligned} & \text { TPDestination_Ang_WI_R3 } \\ & \text { 5000c } \end{aligned}$	265	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & 35000 \mathrm{c} \end{aligned}$	265	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R35 } \\ & \text { 000c } \end{aligned}$	265	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R3 } \\ & \text { 5000c } \end{aligned}$	265	$\begin{aligned} & \text { STD_TPDestination_Ang_WI_R35 } \\ & \text { 000c } \end{aligned}$
266	Links_R35000c	266	MEAN_Links_R35000c	266	MIN_Links_R35000c	266	MAX_Links_R35000c	266	STD_Links_R35000c
267	Length_R35000c	267	MEAN_Length_R35000c	267	MIN_Length_R35000c	267	MAX_Length_R35000c	267	STD_Length_R35000c
268	Ang_Dist_R35000c	268	MEAN_Ang_Dist_R35000c	268	MIN_Ang_Dist_R35000c	268	MAX_Ang_Dist_R35000c	268	STD_Ang_Dist_R35000c
269	Weight_WI_R35000c	269	MEAN_Weight_WI_R35000c	269	MIN_Weight_WI_R35000c	269	MAX_Weight_WI_R35000c	269	STD_Weight_WI_R35000c
270	$\begin{aligned} & \text { MeanGeoLen_Ang_WI_R35 } \\ & \text { 000c } \end{aligned}$	270	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & 35000 \mathrm{c} \end{aligned}$	270	MIN_MeanGeoLen_Ang_WI_R35 000c	270	MAX_MeanGeoLen_Ang_WI_R35 000c	270	```STD_MeanGeoLen_Ang_WI_R35 000c```
271	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R3 } \\ & 5000 \mathrm{c} \end{aligned}$	271	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & \text { 35000c } \end{aligned}$	271	$\begin{aligned} & \text { MIN_Mean_Crow_Flight_WI_R35 } \\ & \text { O00c } \end{aligned}$	271	$\begin{aligned} & \text { MAX_Mean_Crow_Flight_WI_R3 } \\ & \text { 5000c } \end{aligned}$	271	$\begin{aligned} & \text { STD_Mean_Crow_Flight_WI_R35 } \\ & \text { 000c } \end{aligned}$
272	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 35000c } \end{aligned}$	272	$\begin{aligned} & \text { MEAN_Diversion_Ratio_Ang_WI } \\ & \text { _R35000c } \end{aligned}$	272	$\begin{aligned} & \text { MIN_Diversion_Ratio_Ang_WI_R } \\ & \text { 35000c } \end{aligned}$	272	$\begin{aligned} & \text { MAX_Diversion_Ratio_Ang_WI_R } \\ & 35000 \mathrm{c} \end{aligned}$	272	```STD_Diversion_Ratio_Ang_WI_R 35000c```
273	```Convex_Hull_Area_R35000 c```	273	MEAN_Convex_Hull_Area_R350 00c	273	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R35000 } \\ & \text { c } \end{aligned}$	273	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R35000 } \\ & \text { c } \end{aligned}$	273	STD_Convex_Hull_Area_R35000c
274	$\begin{aligned} & \text { Convex_Hull_Perimeter_R3 } \\ & \text { 5000c } \end{aligned}$	274	$\begin{aligned} & \text { MEAN_Convex_Hull_Perimeter_ } \\ & \text { R35000c } \end{aligned}$	274	```MIN_Convex_Hull_Perimeter_R3 5000c```	274	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R3 } \\ & 5000 \mathrm{c} \end{aligned}$	274	```STD_Convex_Hull_Perimeter_R3 5000c```
275	Convex_Hull_Max_Radius_ R35000c	275	MEAN_Convex_Hull_MEAN_Radi us_R35000c	275	MIN_Convex_Hull_Max_Radius_ R35000c	275	MAX_Convex_Hull_Max_Radius_ R35000c	275	```STD_Convex_Hull_Max_Radius_R 35000c```
276	```Convex_Hull_Bearing_R350 00c```	276	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R3 } \\ & \text { 5000c } \end{aligned}$	276	```MIN_Convex_Hull_Bearing_R350```	276	```MAX_Convex_Hull_Bearing_R350 OOc```	276	```STD_Convex_Hull_Bearing_R350 00c```
277	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R35000c } \end{aligned}$	277	MEAN_Convex_Hull_Shape_Inde x_R35000c	277	MIN_Convex_Hull_Shape_Index_ R35000c	277	MAX_Convex_Hull_Shape_Index _R35000c	277	STD_Convex_Hull_Shape_Index_ R35000c
278	```Mean_Ang_Dist_WI_R4000 Oc```	278	$\begin{aligned} & \text { MEAN_Mean_Ang_Dist_WI_R40 } \\ & \text { 000c } \end{aligned}$	278	```MIN_Mean_Ang_Dist_WI_R4000 Oc```	278	```MAX_Mean_Ang_Dist_WI_R4000 Oc```	278	```STD_Mean_Ang_Dist_WI_R4000 Oc```
279	NetQuantPD_Ang_WI_R40 000c	279	MEAN_NetQuantPD_Ang_WI_R4 0000c	279	```MIN_NetQuantPD_Ang_WI_R400 00c```	279	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R40 } \\ & \text { 000c } \end{aligned}$	279	```STD_NetQuantPD_Ang_WI_R400 OOc```
280	Betweenness_Ang_WI_R40 000c	280	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & 40000 \mathrm{c} \end{aligned}$	280	MIN_Betweenness_Ang_WI_R40 000c	280	```MAX_Betweenness_Ang_WI_R40 000c```	280	```STD_Betweenness_Ang_WI_R40 000c```

281	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & 40000 \mathrm{c} \end{aligned}$	281	MEAN_TPBetweenness_Ang_WI _R40000c	281	$\begin{aligned} & \text { MIN_TPBetweenness_Ang_WI_R } \\ & \text { 40000c } \end{aligned}$	281	```MAX_TPBetweenness_Ang_WI_R 40000c```	281	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & 40000 \mathrm{c} \end{aligned}$
282	TPDestination_Ang_WI_R4 0000c	282	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & 40000 \mathrm{c} \end{aligned}$	282	```MIN_TPDestination_Ang_WI_R40 000c```	282	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R4 } \\ & \text { 0000c } \end{aligned}$	282	$\begin{aligned} & \text { STD_TPDestination_Ang_WI_R40 } \\ & \text { 000c } \end{aligned}$
283	Links_R40000c	283	MEAN_Links_R40000c	283	MIN_Links_R40000c	283	MAX_Links_R40000c	283	STD_Links_R40000c
284	Length_R40000c	284	MEAN_Length_R40000c	284	MIN_Length_R40000c	284	MAX_Length_R40000c	284	STD_Length_R40000c
285	Ang_Dist_R40000c	285	MEAN_Ang_Dist_R40000c	285	MIN_Ang_Dist_R40000c	285	MAX_Ang_Dist_R40000c	285	STD_Ang_Dist_R40000c
286	Weight_WI_R40000c	286	MEAN_Weight_WI_R40000c	286	MIN_Weight_WI_R40000c	286	MAX_Weight_WI_R40000c	286	STD_Weight_WI_R40000c
287	MeanGeoLen_Ang_WI_R40 000c	287	MEAN_MeanGeoLen_Ang_WI_R 40000c	287	$\begin{aligned} & \text { MIN_MeanGeoLen_Ang_WI_R40 } \\ & \text { 000c } \end{aligned}$	287	$\begin{aligned} & \text { MAX_MeanGeoLen_Ang_WI_R40 } \\ & \text { 000c } \end{aligned}$	287	$\begin{aligned} & \text { STD_MeanGeoLen_Ang_WI_R40 } \\ & \text { 000c } \end{aligned}$
288	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R4 } \\ & \text { 0000c } \end{aligned}$	288	$\begin{aligned} & \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 40000 \mathrm{c} \end{aligned}$	288	$\begin{aligned} & \text { MIN_Mean_Crow_Flight_WI_R40 } \\ & \text { 000c } \end{aligned}$	288	$\begin{aligned} & \hline \text { MAX_Mean_Crow_Flight_WI_R4 } \\ & \text { 0000c } \end{aligned}$	288	$\begin{aligned} & \text { STD_Mean_Crow_Flight_WI_R40 } \\ & \text { 000c } \end{aligned}$
289	Diversion_Ratio_Ang_WI_R 40000 c 40000c	289	MEAN_Diversion_Ratio_Ang_WI _R40000c	289	MIN_Diversion_Ratio_Ang_WI_R 40000c	289	MAX_Diversion_Ratio_Ang_WI_R 40000c	289	$\begin{aligned} & \hline \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 40000c } \end{aligned}$
290	$\begin{aligned} & \text { Convex_Hull_Area_R40000 } \\ & \text { c } \end{aligned}$	290	```MEAN_Convex_Hull_Area_R400 OOc```	290	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R40000 } \\ & \text { c } \end{aligned}$	290	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R40000 } \\ & \text { c } \end{aligned}$	290	STD_Convex_Hull_Area_R40000c
291	Convex_Hull_Perimeter_R4 0000c	291	MEAN_Convex_Hull_Perimeter_ R40000c	291	MIN_Convex_Hull_Perimeter_R4 0000c	291	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R4 } \\ & \text { 0000c } \end{aligned}$	291	```STD_Convex_Hull_Perimeter_R4 0000c```
292	Convex_Hull_Max_Radius_ R40000c	292	MEAN_Convex_Hull_MEAN_Radi us_R40000c	292	MIN_Convex_Hull_Max_Radius_ R40000c	292	MAX_Convex_Hull_Max_Radius_ R40000c	292	```STD_Convex_Hull_Max_Radius_R 40000c```
293	```Convex_Hull_Bearing_R400 00c```	293	$\begin{aligned} & \text { MEAN_Convex_Hull_Bearing_R4 } \\ & \text { O000c } \end{aligned}$	293	```MIN_Convex_Hull_Bearing_R400 00c```	293	```MAX_Convex_Hull_Bearing_R400 00c```	293	$\begin{aligned} & \text { STD_Convex_Hull_Bearing_R400 } \\ & \text { 00c } \end{aligned}$
294	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R40000c } \end{aligned}$	294	$\begin{aligned} & \text { MEAN_Convex_Hull_Shape_Inde } \\ & \text { x_R40000c } \end{aligned}$	294	MIN_Convex_Hull_Shape_Index_ R40000c	294	MAX_Convex_Hull_Shape_Index _R40000c	294	STD_Convex_Hull_Shape_Index_ R40000c
295	```Mean_Ang_Dist_WI_R4500 Oc```	295	$\begin{aligned} & \text { MEAN_Mean_Ang_Dist_WI_R45 } \\ & \text { 000c } \end{aligned}$	295	```MIN_Mean_Ang_Dist_WI_R4500 Oc```	295	```MAX_Mean_Ang_Dist_WI_R4500 Oc```	295	```STD_Mean_Ang_Dist_WI_R4500 Oc```
296	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$	296	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R4 } \\ & \text { 5000c } \end{aligned}$	296	$\begin{aligned} & \text { MIN_NetQuantPD_Ang_WI_R450 } \\ & \text { OOc } \end{aligned}$	296	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$	296	$\begin{aligned} & \text { STD_NetQuantPD_Ang_WI_R450 } \\ & \text { 00c } \end{aligned}$
297	$\begin{aligned} & \text { Betweenness_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$	297	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & 45000 \mathrm{c} \end{aligned}$	297	$\begin{aligned} & \hline \text { MIN_Betweenness_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$	297	$\begin{aligned} & \text { MAX_Betweenness_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$	297	$\begin{aligned} & \hline \text { STD_Betweenness_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$
298	TPBetweenness_Ang_WI_R 45000c	298	MEAN_TPBetweenness_Ang_WI _R45000c	298	```MIN_TPBetweenness_Ang_WI_R 45000c```	298	```MAX_TPBetweenness_Ang_WI_R 45000c```	298	$\begin{aligned} & \text { STD_TPBetweenness_Ang_WI_R } \\ & \text { 45000c } \end{aligned}$
299	TPDestination_Ang_WI_R4 5000c	299	$\begin{aligned} & \hline \text { MEAN_TPDestination_Ang_WI_R } \\ & 45000 \mathrm{c} \end{aligned}$	299	MIN_TPDestination_Ang_WI_R45 000c	299	$\begin{aligned} & \text { MAX_TPDestination_Ang_WI_R4 } \\ & \text { 5000c } \end{aligned}$	299	$\begin{aligned} & \hline \text { STD_TPDestination_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$
300	Links_R45000c	300	MEAN_Links_R45000c	300	MIN_Links_R45000c	300	MAX_Links_R45000c	300	STD_Links_R45000c
301	Length_R45000c								
302	Ang_Dist_R45000c	302	MEAN_Ang_Dist_R45000c	302	MIN_Ang_Dist_R45000c	302	MAX_Ang_Dist_R45000c	302	STD_Ang_Dist_R45000c
303	Weight_WI_R45000c	303	MEAN_Weight_WI_R45000c	303	MIN_Weight_WI_R45000c	303	MAX_Weight_WI_R45000c	303	STD_Weight_WI_R45000c
304	$\begin{aligned} & \text { MeanGeoLen_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$	304	$\begin{aligned} & \text { MEAN_MeanGeoLen_Ang_WI_R } \\ & \text { 45000c } \end{aligned}$	304	$\begin{aligned} & \text { MIN_MeanGeoLen_Ang_WI_R45 } \\ & \text { 000c } \end{aligned}$	304	MAX_MeanGeoLen_Ang_WI_R45 000c	304	```STD_MeanGeoLen_Ang_WI_R45 000c```

305	Mean_Crow_Flight_WI_R4 5000c	305	$\begin{aligned} & \hline \text { MEAN_Mean_Crow_Flight_WI_R } \\ & 45000 \mathrm{c} \end{aligned}$	305	$\begin{aligned} & \text { MIN_Mean_Crow_Flight_WI_R45 } \\ & \text { 000c } \end{aligned}$	305	MAX_Mean_Crow_Flight_WI_R4 5000c	305	```STD_Mean_Crow_Flight_WI_R45```
306	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 45000c } \end{aligned}$	306	MEAN_Diversion_Ratio_Ang_WI R45000c	306	MIN_Diversion_Ratio_Ang_WI_R 45000c	306	MAX_Diversion_Ratio_Ang_WI_R 45000c	306	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 45000c } \end{aligned}$
307	Convex_Hull_Area_R45000 c	307	MEAN_Convex_Hull_Area_R450 OOc	307	MIN_Convex_Hull_Area_R45000 c	307	MAX_Convex_Hull_Area_R45000 c	307	STD_Convex_Hull_Area_R45000c
308	```Convex_Hull_Perimeter_R4 5000c```	308	MEAN_Convex_Hull_Perimeter_ R45000c	308	```MIN_Convex_Hull_Perimeter_R4 5000c```	308	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R4 } \\ & 5000 \mathrm{c} \end{aligned}$	308	$\begin{aligned} & \text { STD_Convex_Hull_Perimeter_R4 } \\ & \text { 5000c } \end{aligned}$
309	$\begin{aligned} & \text { Convex_Hull_Max_Radius_ } \\ & \text { R45000c } \end{aligned}$	309	MEAN_Convex_Hull_MEAN_Radi us_R45000c	309	MIN_Convex_Hull_Max_Radius_ R45000c	309	$\begin{aligned} & \text { MAX_Convex_Hull_Max_Radius_ } \\ & \text { R45000c } \end{aligned}$	309	```STD_Convex_Hull_Max_Radius_R 45000c```
310	```Convex_Hull_Bearing_R450 00c```	310	```MEAN_Convex_Hull_Bearing_R4 5000c```	310	```MIN_Convex_Hull_Bearing_R450 00c```	310	```MAX_Convex_Hull_Bearing_R450 O0c```	310	$\begin{aligned} & \text { STD_Convex_Hull_Bearing_R450 } \\ & \text { 00c } \end{aligned}$
311	$\begin{aligned} & \text { Convex_Hull_Shape_Index_ } \\ & \text { R45000c } \end{aligned}$	311	MEAN_Convex_Hull_Shape_Inde x_R45000c	311	MIN_Convex_Hull_Shape_Index_ R45000c	311	MAX_Convex_Hull_Shape_Index _R45000c	311	$\begin{aligned} & \text { STD_Convex_Hull_Shape_Index_ } \\ & \text { R45000c } \end{aligned}$
312	```Mean_Ang_Dist_WI_R5000 Oc```	312	$\begin{aligned} & \text { MEAN_Mean_Ang_Dist_WI_R50 } \\ & \text { 000c } \end{aligned}$	312	```MIN_Mean_Ang_Dist_WI_R5000 Oc```	312	```MAX_Mean_Ang_Dist_WI_R5000 Oc```	312	```STD_Mean_Ang_Dist_WI_R5000 Oc```
313	$\begin{aligned} & \text { NetQuantPD_Ang_WI_R50 } \\ & \text { 000c } \end{aligned}$	313	$\begin{aligned} & \text { MEAN_NetQuantPD_Ang_WI_R5 } \\ & \text { 0000c } \end{aligned}$	313	```MIN_NetQuantPD_Ang_WI_R500 00c```	313	$\begin{aligned} & \text { MAX_NetQuantPD_Ang_WI_R50 } \\ & \text { 000c } \end{aligned}$	313	$\begin{aligned} & \text { STD_NetQuantPD_Ang_WI_R500 } \\ & \text { 00c } \end{aligned}$
314	$\begin{aligned} & \text { Betweenness_Ang_WI_R50 } \\ & \text { 000c } \end{aligned}$	314	$\begin{aligned} & \text { MEAN_Betweenness_Ang_WI_R } \\ & \text { 50000c } \end{aligned}$	314	```MIN_Betweenness_Ang_WI_R50 000c```	314	```MAX_Betweenness_Ang_WI_R50 000c```	314	```STD_Betweenness_Ang_WI_R50 000c```
315	$\begin{aligned} & \text { TPBetweenness_Ang_WI_R } \\ & \text { 50000c } \end{aligned}$	315	MEAN_TPBetweenness_Ang_WI R50000c	315	```MIN_TPBetweenness_Ang_WI_R 50000c```	315	$\begin{aligned} & \text { MAX_TPBetweenness_Ang_WI_R } \\ & \text { 50000c } \end{aligned}$	315	```STD_TPBetweenness_Ang_WI_R 50000c```
316	TPDestination_Ang_WI_R5 0000c	316	$\begin{aligned} & \text { MEAN_TPDestination_Ang_WI_R } \\ & 50000 \mathrm{c} \end{aligned}$	316	$\begin{aligned} & \text { MIN_TPDestination_Ang_WI_R50 } \\ & \text { OOOc } \end{aligned}$	316	MAX_TPDestination_Ang_WI_R5 0000c	316	$\begin{aligned} & \text { STD_TPDestination_Ang_WI_R50 } \\ & \text { 000c } \end{aligned}$
317	Links_R50000c	317	MEAN_Links_R50000c	317	MIN_Links_R50000c	317	MAX_Links_R50000c	317	STD_Links_R50000c
318	Length_R50000c	318	MEAN_Length_R50000c	318	MIN_Length_R50000c	318	MAX_Length_R50000c	318	STD_Length_R50000c
319	Ang_Dist_R50000c	319	MEAN_Ang_Dist_R50000c	319	MIN_Ang_Dist_R50000c	319	MAX_Ang_Dist_R50000c	319	STD_Ang_Dist_R50000c
320	Weight_WI_R50000c	320	MEAN_Weight_WI_R50000c	320	MIN_Weight_WI_R50000c	320	MAX_Weight_WI_R50000c	320	STD_Weight_WI_R50000c
321	$\begin{aligned} & \text { MeanGeoLen_Ang_WI_R50 } \\ & \text { 000c } \end{aligned}$	321	MEAN_MeanGeoLen_Ang_WI_R 50000c	321	$\begin{aligned} & \text { MIN_MeanGeoLen_Ang_WI_R50 } \\ & \text { 000c } \end{aligned}$	321	MAX_MeanGeoLen_Ang_WI_R50 000c	321	STD_MeanGeoLen_Ang_WI_R50 000 c
322	$\begin{aligned} & \text { Mean_Crow_Flight_WI_R5 } \\ & \text { 0000c } \end{aligned}$	322	```MEAN_Mean_Crow_Flight_WI_R 50000c```	322	$\begin{aligned} & \text { MIN_Mean_Crow_Flight_WI_R50 } \\ & \text { 000c } \end{aligned}$	322	MAX_Mean_Crow_Flight_WI_R5 0000c	322	$\begin{aligned} & \text { STD_Mean_Crow_Flight_WI_R50 } \\ & \text { 000c } \end{aligned}$
323	$\begin{aligned} & \text { Diversion_Ratio_Ang_WI_R } \\ & \text { 50000c } \end{aligned}$	323	MEAN_Diversion_Ratio_Ang_WI _R50000c	323	MIN_Diversion_Ratio_Ang_WI_R 50000c	323	MAX_Diversion_Ratio_Ang_WI_R 50000c	323	$\begin{aligned} & \text { STD_Diversion_Ratio_Ang_WI_R } \\ & \text { 50000c } \end{aligned}$
324	```Convex_Hull_Area_R50000 c```	324	MEAN_Convex_Hull_Area_R500 OOc	324	$\begin{aligned} & \text { MIN_Convex_Hull_Area_R50000 } \\ & \text { c } \end{aligned}$	324	$\begin{aligned} & \text { MAX_Convex_Hull_Area_R50000 } \\ & \text { c } \end{aligned}$	324	STD_Convex_Hull_Area_R50000c
325	```Convex_Hull_Perimeter_R5 0000c```	325	MEAN_Convex_Hull_Perimeter_ R50000c	325	MIN_Convex_Hull_Perimeter_R5 0000 c 0000c	325	$\begin{aligned} & \text { MAX_Convex_Hull_Perimeter_R5 } \\ & 0000 \mathrm{c} \end{aligned}$	325	```STD_Convex_Hull_Perimeter_R5 0000c```
326	Convex_Hull_Max_Radius_ R50000c	326	MEAN_Convex_Hull_MEAN_Radi us_R50000c	326	MIN_Convex_Hull_Max_Radius_ R50000c	326	MAX_Convex_Hull_Max_Radius_ R50000c	326	```STD_Convex_Hull_Max_Radius_R 50000c```
327	```Convex_Hull_Bearing_R500 00c```	327	MEAN_Convex_Hull_Bearing_R5 0000c	327	```MIN_Convex_Hull_Bearing_R500 00c```	327	```MAX_Convex_Hull_Bearing_R500 00c```	327	$\begin{aligned} & \text { STD_Convex_Hull_Bearing_R500 } \\ & \text { 00c } \end{aligned}$

328	Convex_Hull_Shape_Index_ R50000c	328	MEAN_Convex_Hull_Shape_Inde x_R50000c	328	MIN_Convex_Hull_Shape_Index_ R50000c	328	MAX_Convex_Hull_Shape_Index R50000c	328	STD_Convex_Hull_Shape_Index R50000c

* For meaning of each acronym used in the variable column and their description, please see Table 3.

4.3 Greenness

Normalized Difference Vegetation Index (NDVI) has been employed as an objective measure of greenness. The NDVI is a unitless index calculated from the reflectance measures in satellite data, comparing the amount of energy absorbed by the chlorophyll in the red portion and the amount scattered by the internal structure of the leaves in the near-infrared region. This contrast has been employed as an estimate for vegetation greenness, as indicated by the following formula:

$$
N D V I=\frac{(N I R-R E D)}{(N I R+R E D)}
$$

where RED and NIR stand for the spectral reflectance measurements acquired in the visible (red) and near-infrared regions, respectively. The index ranges between -1 and +1 , with higher values reflective of healthy green vegetation and vice versa. A collection 0.50 metre resolution Colour Infrared (CIR) imagery data collected by Blue Sky were merged together, area of interest extracted and employed in the calculation of NDVI index in Raster Calculator - Spatial Analyst, ArcGIS 10.2. The CIR band 2, 630-690 nm, was used as the red region of the electromagnetic spectrum, while band 1, 760-900 nm, acted as the infrared region, so that the formulae used was NDVI = (Band $1-$ Band 2$) /$ (Band $1+$ Band 2). Neighbourhoods of 0.5 and 1.0 kilometre Euclidean buffers around each UK Biobank participant's residence were defined and the greenness was calculated in terms of mean, minimum, maximum and standard deviation in the NDVI values within the defined 0.5 and 1.0 kilometre circular buffers.

Deliverable file 5:

File Name (1.33 MB)	Description
Wales_UKB_NDVI.csv	Normalized Difference Vegetation Index greenness within pre-defined Euclidean buffers (0.5 Km, 1.0 Km) of UK Biobank participant's residence.

Header file name: Wales_UKB_NDVI_Header.csv (172 bytes)

Table 6: Description of variables used

Column No.	Variable	Description
1	Encoded anonymised participant ID	
2	NDVI_500m_mean	Mean NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
3	NDVI_500m_min	Minimum value of NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
4	NDVI_500m_max	Maximum value of NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
5	NDVI_500m_STD	Standard deviation in NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
6	NDVI_1000m_mean	Mean NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence
7	NDVI_1000m_min	Minimum value of NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence
8	NDVI_1000m_max	Maximum value of NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence
9	NDVI_1000m_STD	Standard deviation in NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence

4.4 Terrain (slope)

A series of 5 metre resolution Bluesky digital terrain model were mosaicked together and the area of interest extracted. Slope analysis was conducted in Spatial Analyst, ArcGIS 10.2. As in the case of greenness, neighbourhoods of 0.5 and 1.0 kilometre Euclidean buffers around each UK Biobank participant's residence were defined and slope (in degrees) within an individual's home range was operationalized in terms of mean, minimum, maximum and standard deviation in the values within the defined 0.5 and 1.0 kilometre circular buffers.

Deliverable file 6:

File Name (size)	Description
UKB_Wales_slope.csv (1.62 MB)	Terrain (slope in degrees) within pre-defined Euclidean buffers (0.5 Km, 1.0 Km) of UK Biobank participant's residence.

Header file name: UKB_Wales_slope_Header.csv (188 bytes)

Table 7: Description of variables used

Column No.	Variable	Description
1	Encoded anonymised participant ID	
2	Slope500m_Mean	Mean slope within 0.5 Km Euclidean buffer of UK Biobank participant's residence
3	Slope500m_Minimum	Minimum value of slope within 0.5 Km Euclidean buffer of UK Biobank participant's residence
4	Slope500m_Maximum	Maximum value of slope within 0.5 Km Euclidean buffer of UK Biobank participant's residence
5	Slope1000m_Mean	Standard deviation in slope within 0.5 Km Euclidean buffer of UK Biobank participant's residence
6	Mean slope within 1.0 Km Euclidean buffer of UK Biobank participant's residence	
7	Slope1000m_Minimum	Minimum value of slope within 1.0 Km Euclidean buffer of UK Biobank participant's residence
8	Slope1000m_Maximum	Maximum value of slope within 1.0 Km Euclidean buffer of UK Biobank participant's residence
9	Slope1000m_STD	Standard deviation in slope within 1.0 Km Euclidean buffer of UK Biobank participant's residence

4.5 Welsh index of multiple deprivation (area-level deprivation)

The Welsh index of multiple deprivation (WIMD) scores, measured at the level of lower super output areas (LSOA) census areas have been employed as indicators of neighbourhood deprivation. WIMD 2008 and 2011 have been employed in the present study. The composite WIMD score originates from eight unitless indicators of disadvantage (so-called domain indices) for income, employment, health, education, access to services, community safety, physical environment and housing having domain weights of $23.5 \%, 23.5 \%, 14 \%, 14 \%, 10 \%, 5 \%, 5 \%$ and 5% respectively ${ }^{49}$. Thus, each geocoded UK respondent's address was associated with the WIMD (2008 and 2011) scores of the LSOA in which it's spatially located.

Deliverable file 7:

File Name (size)	Description
UKB_Wales_WIMD.csv (2.16 MB)	WIMD 2008 and 2011 scores of the LSOAs within which UK Biobank participant resides.

Header file name: UKB_Wales_WIMD_Header.csv (528 bytes)

Table 8: Description of variables used

Column No.	Variables	Description
1	Encoded anonymised participant ID	
2	LSOA_2011_code	2011 lower super output area code
3	LSOA_2011_name	2011 lower super output area code
4	Income_2008_score	WIMD 2008 income domain
5	Employment_2008_score	WIMD 2008 employment domain
6	Health_2008_score	WIMD 2008 health domain
7	Education_2008_score	WIMD 2008 education domain
8	Access_to_services_2008_score	WIMD 2008 access to services domain
9	Housing_2008_score	WIMD 2008 housing domain
10	Physical_environment_2008_score	WIMD 2008 physical environment domain
11	Community_safety_2008_score	WIMD 2008 community safety domain
12	WIMD_2008_score	WIMD 2008 overall score
13	Income_2011_score	WIMD 2011 income domain
14	Employment_2011_score	WIMD 2011 employment domain
15	Health_2011_score	WIMD 2011 health domain
16	Education_2011_score	WIMD 2011 education domain
17	Access_to_services_2011_score	WIMD 2011 access to services domain
18	Housing_2011_score	WIMD 2011 housing domain
19	Physical_environment_2011_score	WIMD 2011 physical environment domain
20	Community_safety_2011_score	WIMD 2011 community safety domain
21	WIMD_2011_score	WIMD 2011 overall score

4.6 Building class

The building class GIS datasets were extracted for the area of interest. The building footprints were subsequently linked with the geocoded UK Biobank participants' residences through a spatial query. After taking in to account the missing data, linkages could be obtained for $\mathrm{N}=15,470$ Biobank respondents. There are 9 age categories and 19 type categories in this dataset. However, age categories 1,2 and 8 as well as type categories of 3,5 and 15 have been removed from the latest release (indicated by DNU; see Fig. 1). The age and type codes are combined together to form the building class code of each dwelling.

Deliverable file 8:

File Name (size)	Description
Wales_UKB_Building_Class.csv (587 KB)	Building class of the dwelling within which UK Biobank participant resides.

Header file name: Wales_UKB_Building_Class_Header.csv (111 bytes)

Table 9: Building class quality code used ${ }^{50}$

Class code	Definition
A	- Very experienced PI compiled the dataset - The imagery used was 12.5 cm resolution or better - The imagery was of very good or better quality with high definition of building features - Field verification was undertaken with fieldwork photos available - Some local knowledge was available or gained during the field visit.
B	- Experienced PI compiled the dataset - The imagery used was 25 cm resolution or better - The imagery was of good or better quality with reasonable definition of building features - Field verification was undertaken - Some local knowledge was available or gained during the field visit
C	- Less experienced PI compiled the dataset - The imagery used was 50 cm resolution or better - The imagery was often of a poor quality with poor definition of building features - Only limited field verification was undertaken - Little local knowledge was available or gained during the field visit.

				IMAGE	O INFOR	N				Version 6 September 2012
Citios Reverlad	BUILDING CLASS REFERENCE SHEET									
	AGE	Hictorio to end Georglan -1837	Early and Middle Vlotorlan 1837-1870	Late Viotoriani Edwardian 1870-1814	World War 1. World War 2 1814-1946	Poct war regeneration 1845-1884	$\left\|\begin{array}{c} \text { 3utioeci } \\ \text { coventise } 1894 \\ 1879 \end{array}\right\|$	$\begin{gathered} \text { Modern } \\ \text { 1878-1998 } \end{gathered}$	Reoent yoars 2000-photo date ${ }^{+}$	Unknown daste
TYPE		3			4	5	6	7	8	0
Very Tall Fisto (point blooks)	1					55	74	93	(113) DNU	
Tall fatc e-16 ctorsyc (clabs)	2					56	75	94	(114) DNU	
Medium helght fiate 5-8 ctoreys	3			(25) DNU	$\begin{aligned} & \text { (40) } \\ & \text { DNU } \end{aligned}$	$\begin{aligned} & \text { (57) } \\ & \text { DNU } \end{aligned}$	(76) DNU	(95) DNU	(115) DNU	
Lower 3-4 etorey and umaller fiate, detaohed and linked	4			26	41	58	77	96	$\begin{aligned} & (116) \\ & \text { DNU } \end{aligned}$	
Tall terraose 3-4 ctoreys	5	$\begin{aligned} & \text { (2) } \\ & \text { DNU } \end{aligned}$	(13) DNU	(27) DNU	(42) DNU	$\begin{aligned} & \text { (59) } \\ & \text { DNU } \end{aligned}$	(78) DNU	(97) DNU	(117) DNU	
Low terraoes, 2 etoroyt with large Trear extenclon	6	(3) DNU	(14) DNU	28	43	60	79	98	$\begin{gathered} (118) \\ \text { DNU } \end{gathered}$	
Low terraoes, emall	5	(4) DNU	(15) DNU	29	44	61	80	99	(119) DNU	
Linked and ctep Ilinked housec, 2.3 or mixed 2 and 3 ctoreys	8					62	81	100	$\begin{aligned} & (120) \\ & \text { DNU } \end{aligned}$	
Planned balanoedmlxed ectatec	9					63	82	101	121	
standard elze cemic	10	(5) DNU	(16) DNU	30	45	64	83	102	(122) DNU	
somi type houce in muitiplec of 4,8,8 sto.	11			31	46	65	84	103	$\begin{aligned} & \text { (123) } \\ & \text { DNU } \end{aligned}$	
Laroe property cemic	12	(6) DNU	(17) DNU	32	47	66	85	104	(124) DNU	
amaller detaohed nouces	13	$\begin{gathered} \text { (7) } \\ \text { DNU } \end{gathered}$	(18) DNU	33	48	67	86	105	$\begin{aligned} & (125) \\ & \text { DNU } \end{aligned}$	
Large detsonod noucec		(8) DNU	(19) DNU	34	49	68	87	106	$\begin{aligned} & \text { (126) } \\ & \text { DNU } \end{aligned}$	
Very large detaohed housce, cometimes converted to fiate		$\begin{gathered} \text { (9) } \\ \text { DNU } \end{gathered}$	(20) DNU	$\begin{aligned} & (35) \\ & \text { DNU } \end{aligned}$	(50) DNU	(69) DNU	(88) DNU	$\begin{aligned} & \text { (107) } \\ & \text { DNU } \end{aligned}$	(127) DNU	
Wlixed houcing in cmall cettiomente	16									108
Non recidential bullding	17									132
Probably Recidential bullding - Unknown olaceifioation	18									333
Addrese point unrellable - no olaceifioation	19									999

Fig. 2 Building class codes ${ }^{51}$

Table 10: Description of variables used

Column No.	Variables	Description
1	Encoded anonymised participant ID	
2	Building_Class_code	Refer fig. 2
3	Age_code	Refer fig. 2
4	Type_code	Refer fig. 2
5	Quality_code	Refer Table 9
6	Class_Name	Categorized as public and non-public buildings

5. References:

1. Sarkar, C., Webster, C. and Gallacher, J. (2014) Healthy Cities: Public Health through Urban Planning. Cheltenham, UK: Edward Elgar Publishing Limited. (In press, due April 2014).
2. Litman, T. (2003) Measuring transportation: traffic, mobility and accessibility, ITE Journal (Institute of Transportation Engineers), 73, 28-32.
3. Norman, G.J., Nutter, S.K., Ryan, S., Sallis, J.F., Calfas, K.J. and Patrick, K. (2006) Community design and access to recreational facilities as correlates of adolescent physical activity and body-mass index. Journal of Physical Activity and Health, 3, S118-28.
4. Diez Roux, A.V., Evenson, K.R., McGinn, A.P., Brown, D.G., Moore, L., Brines, S. and Jacobs, D.R., Jr (2007) Availability of recreational resources and physical activity in adults. American Journal of Public Health, 97, 493-9.
5. Nielsen, T.S., Hansen, K.B., 2007. Do green areas affect health? Results from a Danish survey on the use of green areas and health indicators. Health and Place 13, 839-850.
6. Björk, J., Albin, M., Grahn, P., Jacobsson, H., Ardö, J., Wadbro, J. and Ostergren, P.O. (2008) Recreational values of the natural environment in relation to neighbourhood satisfaction, physical activity, obesity and wellbeing. Journal of Epidemiology and Community Health, 62.
7. Wolch, J., Jerrett, M., Reynolds, K., McConnell, R., Chang, R., Dahmann, N., Brady, K., Gilliland, F., Su, J.G., Berhane, K., 2011. Childhood obesity and proximity to urban parks and recreational resources: a longitudinal cohort study. Health and Place 17, 207-214.
8. Handy, S., Cao, X. and Mokhtarian, P.L. (2006) Self-selection in the relationship between the built environment and walking: empirical evidence from Northern California. Journal of the American Planning Association, 72, 55-74.
9. Cerin, E., Leslie, E., Toit, L., Owen, N. and Frank, L.D. (2007) Destinations that matter: associations with walking for transport. Health and Place, 13, 713-24.
10. Saarloos, D., Alfonso, H., Giles-Corti, B., Middleton, N. and Almeida, O.P. (2011) The built environment and depression in later life: the Health in Men Study. American Journal of Geriatric Psychiatry, 19, 461-70.
11. Sallis, J.F., Bowles, H.R., Bauman, A., Ainsworth, B.E., Bull, F.C., Craig, C.L., Sjöström, M., De Bourdeaudhuij, I., Lefevre, J., Matsudo, V., Matsudo, S., Macfarlane, D.J., Gomez, L.F., Inoue, S., Murase, N., Volbekiene, V., McLean, G., Carr, H., Heggebo, L.K., Tomten, H. and Bergman, P. (2009) Neighborhood environments and physical activity among adults in 11 countries. American Journal of Preventive Medicine, 36, 484-90.
12. Wood, L., Frank, L.D. and Giles-Corti, B. (2010) Sense of community and its relationship with walking and neighborhood design. Social Science and Medicine, 70, 1381-90.
13. Bassett, D.R., Jr, Pucher, J., Buehler, R., Thompson, D.L. and Crouter, S.E. (2008) Walking, cycling, and obesity rates in Europe, North America and Australia. Journal of Physical Activity and Health, 5, 795-814.
14. Brown, B.B. and Werner, C.M. (2008) Before and after a new light rail stop: resident attitudes, travel behavior, and obesity. Journal of the American Planning Association, 75, 512.
15. Edwards, R.D. (2008) Public transit, obesity, and medical costs: assessing the magnitudes. Preventive Medicine, 46, 14-21.
16. Inagami, S., Cohen, D.A., Finch, B.K. and Asch, S.M. (2006) You are where you shop: grocery store locations, weight, and neighborhoods. American Journal of Preventive Medicine, 31, 10-17.
17. Morland, K., Diez Roux, A.V. and Wing, S. (2006) Supermarkets, other food stores, and obesity: the Atherosclerosis Risk in Communities Study. American Journal of Preventive Medicine, 30, 333-9.
18. Black, J.L., Macinko, J., Dixon, L.B. and Fryer, J.G.E. (2010) Neighborhoods and obesity in New York City. Health and Place, 16, 489-99.
19. Giles-Corti, B., Macintyre, S., Clarkson, J.P., Pikora, T. and Donovan, R.J. (2003) Environmental and lifestyle factors associated with overweight and obesity in Perth, Australia. American Journal of Health Promotion, 18, 93-102.
20. Rutt, C.D., Coleman, K.J., 2005. Examining the relationships among built environment, physical activity, and body mass index in El Paso, TX. Preventive Medicine 40, 831-841.
21. Field, A., Witten, K., Robinson, E. and Pledger, M. (2004) Who gets to what? Access to community resources in two New Zealand cities. Urban Policy and Research, 22, 189-205.
22. Pearce, J., Witten, K., Bartie, P., 2006. Neighbourhoods and health: a GIS approach to measuring community resource accessibility. Journal of Epidemiology and Community Health 60, 389-395.
23. Lovett, A., Haynes, R., Sünnenberg, G. and Gale, S. (2002) Car travel time and accessibility by bus to general practitioner services: a study using patient registers and GIS. Social Science and Medicine, 55, 97-111.
24. Luo, W. and Wang, F. (2003) Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. Environment and Planning B: Planning and Design, 30, 865-84.
25. Frank, L.D., Andresen, M.A. and Schmid, T.L. (2004) Obesity relationships with community design, physical activity, and time spent in cars. American Journal of Preventive Medicine, 27, 87-96.
26. Li, F., Harmer, P.A., Cardinal, B.J., Bosworth, M., Acock, A., Johnson-Shelton, D. and Moore, J.M. (2008) Built environment, adiposity, and physical activity in adults aged 50-75. American Journal of Preventive Medicine, 35, 38-46.
27. Troped, P.J., Wilson, J.S., Matthews, C.E., Cromley, E.K. and Melly, S.J. (2010) The built environment and location-based physical activity. American Journal of Preventive Medicine, 38, 429-38.
28. Ball, K., Lamb, K., Travaglini, N. and Ellaway, A. (2012) Street connectivity and obesity in Glasgow, Scotland: impact of age, sex and socioeconomic position. Health and Place, 18, 1307-13.
29. Sarkar, C., Gallacher, J. and Webster, C. (2013) Built environment configuration and change in body mass index: the Caerphilly Prospective Study (CaPS). Health and Place, 19, 33-44.
30. Sarkar, C., Gallacher, J. and Webster, C. (2013) Urban built environment configuration and psychological distress in older men: Results from the Caerphilly study. BMC Public Health, 13, 695.
31. Mehta, N.K. and Chang, V.W. (2008) Weight status and restaurant availability: a multilevel analysis. American Journal of Preventive Medicine, 34, 127.
32. Dengel, D.R., Hearst, M.O., Harmon, J.H., Forsyth, A. and Lytle, L.A. (2009) Does the built environment relate to the metabolic syndrome in adolescents? Health and Place, 15, 94651.
33. Burgoine, T., Alvanides, S. and Lake, A.A. (2011) Assessing the obesogenic environment of North East England. Health and Place, 17, 738-47.
34. Huckle, T., Huakau, J., Sweetsur, P., Huisman, O., Casswell, S. 92008) Density of alcohol outlets and teenage drinking: Living in an alcogenic environment is associated with higher consumption in a metropolitan setting. Addiction, 103, 1614-1621.
35. Fone, D., Dunstan, F., White, J., Webster, C., Rodgers, S., Lee, S., Shiode, N., Orford, S., Weightman, A. and Brennan, I. (2012) Change in alcohol outlet density and alcohol-related harm to population health (CHALICE). BMC Public Health, 12, 428.
36. Diez Roux, A. V. (2004) Estimating neighborhood health effects: The challenges of causal inference in a complex world. Social Science and Medicine, 58, 1953-1960.
37. Diez Roux, A. V. (2004) The study of group-level factors in epidemiology: rethinking variables, study designs, and analytical approaches. Epidemiologic Reviews, 26, 104-111.
38. Manolio, T. A. \& Collins, R. (2010) Enhancing the feasibility of large cohort studies. The Journal of the American Medical Association, 304, 2290-2291.
39. Manolio, T. A., Weis, B. K., Cowie, C. C., Hoover, R. N., Hudson, K., Kramer, B. S., Berg, C., Collins, R., Ewart, W. \& Gaziano, J. M. 2012. New models for large prospective studies: Is there a better way? American Journal of Epidemiology, 175, 859-866.
40. Gallacher, J.E.J. (2007) The case for large scale fungible cohorts. European Journal of Public Health, 17, 548-549.
41. UK Biobank (2007) UK Biobank: Protocol for a large-scale prospective epidemiological resource. http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-BiobankProtocol.pdf.
42. Collins, R. (2012) What makes UK Biobank special? The Lancet, 379, 1173-1174.
43. Ordnance Survey UK (2012) AddressBase Products: Getting started guide, available at: http://www.ordnancesurvey.co.uk/docs/user-guides/addressbase-products-getting-startedguide.pdf.
44. Ordnance Survey UK (2013) AddressBase Products: User Guide, v1.3-06/2013, available at: http://www.ordnancesurvey.co.uk/docs/user-guides/addressbase-products-user-guide.pdf.
45. Ordnance Survey UK (2012) AddressBase Products: Classification scheme, v 1.1-04/2012, available at: http://www.ordnancesurvey.co.uk/docs/user-guides/addressbase-plus-premium-classification-codes.zip.
46. Department of Transport (2012) NPTG and NaPTAN Schema Guide, 2.4-v0.57, available at: http://www.dft.gov.uk/naptan/schema/schemas.htm\#2.4guide.
47. Hillier, B. (1996) Space is the machine: A configurational theory of architecture. Cambridge: Cambridge University Press.
48. Chiaradia, A.J., Webster, C. and Crispin, C. (2013) sDNA: A software for spatial design network analysis. Specifications, available at: http://www.cardiff.ac.uk/sdna/.
49. Welsh Government (2011) Welsh Index of Multiple Deprivation 2011: Summary Report, available at: http://wales.gov.uk/docs/statistics/2011/110831wimd11summaryen.pdf.
50. GeoInformation Group (2012) Cities Revealed building class datasets: Note to users, available at:
http://www.landmap.ac.uk/images/stories/datasets/building class100/Building Class Note s 2012.pdf.
51. Geolnformation Group (2012) Image to information: Building class reference sheet, available at:
http://www.landmap.ac.uk/images/stories/datasets/building class100/Building Class Refer ence Sheet v6 Sep 12.pdf.

[^0]: Header file name: Wales_UKB_LU_ND_Header.csv (468 bytes)

