Abstract
OBJECTIVE: This study aimed to examine the association between exercise workload, resting heart rate (RHR), maximum heart rate and the risk of developing ST-segment elevation myocardial infarction (STEMI).</p>
METHODS: The study included all participants from the UK Biobank who had undergone submaximal exercise stress testing. Patients with a history of STEMI were excluded. The allowed exercise load for each participant was calculated based on clinical characteristics and risk categories. We studied the participants who exercised to reach 50% or 35% of their expected maximum exercise tolerance. STEMI was adjudicated by the UK Biobank. We used Cox regression analysis to study how exercise tolerance and RHR were related to the risk of STEMI.</p>
RESULTS: A total of 66 949 participants were studied, of whom 274 developed STEMI during a median follow-up of 7.7 years. After adjusting for age, sex, blood pressure, smoking, forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow and diabetes, we noted a significant association between RHR and the risk of STEMI (p=0.015). The HR for STEMI in the highest RHR quartile (>90 beats/min) compared with that in the lowest quartile was 2.92 (95% CI 1.26 to 6.77). Neither the maximum achieved exercise load nor the ratio of the maximum heart rate to the maximum load was significantly associated with the risk of STEMI. However, a non-significant but stepwise inverse association was noted between the maximum load and the risk of STEMI.</p>
CONCLUSION: RHR is an independent predictor of future STEMI. An RHR of >90 beats/min is associated with an almost threefold increase in the risk of STEMI.</p>