Abstract
The influence of air pollution on dynamic changes in clinical state from healthy to atrial fibrillation (AF), further AF-related complications and ultimately, death are unclear. We aimed to investigate the relationships between air pollution and the occurrence and progression trajectories of AF. We retrieved 442,150 participants free of heart failure (HF), myocardial infarction (MI), stroke and dementia at baseline from UK Biobank. Exposures to air pollution for each transition stage were estimated at the geocoded residential address of each participant using the bilinear interpolation approach. The outcomes were incident AF, complications, and death. Multi-stage models were used to evaluate the associations between air pollution and dynamic progression of AF. Over a 12.6-year median follow-up, a total of 21,670 incident AF patients were identified, of whom, 4103 developed complications and 1331 died. PM2.5, PM10, NOx and NO2 were differentially positively associated, while O3 was negatively associated with risks of progression trajectories of AF. PM2.5 exposure was significantly associated with an increased risk of progression. The associations of PM2.5, PM10, NOx, and NO2 on incident AF were generally more pronounced compared to other transitions. The cumulative transition probabilities were generally higher in individuals with higher exposure levels of PM2.5, PM10, NOx, and NO2 and lower exposure to O3. Air pollution could potentially have a role in increasing the risk of both the occurrence and progression of AF, emphasizing the significance of air pollution interventions in both the primary prevention of AF and the management of AF-related outcomes.</p>