Abstract
BACKGROUND: Multiple sclerosis (MS) is a chronic neurodegenerative disease, which has a strong genetic component and is more prevalent in women. MS is caused by an autoimmunity initiated inflammatory response which leads to axon demyelination, followed by axon loss, plaque formation and neurodegeneration. The goal of this article was to explore X-linked genetic factors that are associated with MS susceptibility.</p>
METHODS: Using UK Biobank microarray, we analyzed the prevalence of alleles on the X chromosome to identify variants potentially involved in MS. Overall, 488,225 patients across 18,857 markers were analyzed using PLINK.</p>
RESULTS: Our results identify 20 SNPs that are significantly more abundant in persons with MS. The genes associated with these SNPs belong to immunity (LAMP2, AVPR2, MTMR8, F8, BCOR, PORCN, and ELF4) and remyelination (NSDHL, HS6ST2, RBM10, TAZ, and AR) pathways that are potentially of great significance for understanding the onset and progression of multiple sclerosis. We further identified a significant 20-fold increase in incidence of MS cases in women with co-occurrences of SNPs associated with myelination and immunity functions.</p>
CONCLUSIONS: Our analysis provides novel insights into the roles of X-linked genes in the onset and presentation of multiple sclerosis, identifying 20 SNPs in 14 genes involved primarily in immunity and myelination functions that are significantly more abundant in persons with MS. Our co-occurrence analysis suggests that concurrent disruption of both myelination and immune systems significantly increases the risk of MS onset in women.</p>