Abstract
BACKGROUND: Early-life exposure increases health risks throughout an individual's lifetime. Biological aging is influenced by early-life risks as a key process of disease development, but whether early-life risks could accelerate biological aging and elevate late-life mortality and morbidity risks remains unknown. Knowledge is also limited on the potential moderating role of healthy lifestyle.</p>
METHODS: We investigate associations of three early-life risks around birth, breastfeeding, maternal smoking and birth weight, with biological aging of 202 580 UK Biobank participants (54.9 ± 8.1 years old). Biological aging was quantified as KDM-BA, PhenoAge and frailty. Moderate alcohol intake, no current smoking, healthy diet, BMI <30 kg/m2 and regular physical activity were considered as healthy lifestyles. Mortality and morbidity data were retrieved from health records.</p>
RESULTS: Individual early-life risk factors were robustly associated with accelerated biological aging. A one-unit increase in the 'early-life risk score' integrating the three factors was associated with 0.060 (SE=0.0019) and 0.036-unit (SE = 0.0027) increase in z-scored KDM-BA acceleration and PhenoAge acceleration, respectively, and with 22.3% higher odds (95% CI: 1.185-1.262) of frailty. Increased chronological age and healthy lifestyles could mitigate the accelerations of KDM-BA and PhenoAge, respectively. Associations of early-life risk score with late-life mortality and morbidity were mediated by biological aging (proportions: 5.66-43.12%). KDM-BA and PhenoAge accelerations could significantly mediate the impact on most outcomes except anxiety, and frailty could not mediate the impact on T2D.</p>
CONCLUSION: Biological aging could capture and mediate the late-life health risks stemming from the early-life risks, and could be potentially targeted for healthy longevity promotion.</p>