Abstract
Abstract Aims Artificial intelligence (AI)-enhanced 12-lead electrocardiogram (ECG) can detect a range of structural heart diseases (SHDs); however, it has a limited role in community-based screening. We developed and externally validated a noise-resilient single-lead AI-ECG algorithm that can detect SHDs and predict the risk of their development using wearable/portable devices. Methods and results Using 266 740 ECGs from 99 205 patients with paired echocardiographic data at Yale New Haven Hospital, we developed AI Deep learning for Adapting Portable Technology in HEART disease detection (ADAPT-HEART), a noise-resilient, deep learning algorithm, to detect SHDs using lead I ECG. SHD was defined as a composite of having a left ventricular ejection fraction of < 40%, moderate or severe left-sided valvular disease, and severe left ventricular hypertrophy. ADAPT-HEART was validated in four community hospitals in USA, and the population-based cohort of ELSA-Brasil. We assessed the model's performance as a predictive biomarker among those without baseline SHD across hospital-based sites and the UK Biobank. The development population had a median age of 66 [interquartile range, 54-77] years and included 49 947 (50.3%) women, with 18 896 (19.0%) having any SHD. ADAPT-HEART had an area under the receiver operating characteristics curve (AUROC) of 0.879 (95% confidence interval, 0.870-0.888) with good calibration for detecting SHD in the test set, and consistent performance in hospital-based external sites (AUROC: 0.852-0.891) and ELSA-Brasil (AUROC: 0.859). Among individuals without baseline SHD, high vs. low ADAPT-HEART probability conferred a 2.8- to 5.7-fold increase in the risk of future SHD across data sources (all P < 0.05). Conclusion We propose a novel model that detects and predicts a range of SHDs from noisy single-lead ECGs obtainable on portable/wearable devices, providing a scalable strategy for community-based screening and risk stratification for SHD. </p>