Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. While cigarette smoking is the major environmental risk factor in developed countries, it fails to adequately explain the variability in development of COPD. We and others have found that a substantial portion of COPD risk is due to genetic factors. To discover these genetic risk factors, we combined results from the UK Biobank with the International COPD Genetics Consortium, totalling 35,735 cases and 222,076 controls. We identified 82 genome-wide significant loci, including 35 novel findings, 13 of which were also associated with lung function in an independent sample. Using data on gene regulation in lung tissues, we found supportive evidence for specific genes and lung cell types, and for different effects on specific lung phenotypes from CT scans. We also found 14 COPD loci shared with either asthma or pulmonary fibrosis. Our analyses provide further support to the genetic susceptibility and heterogeneity of COPD.
1 Application
Application ID |
20915 | Genome-wide integrative and network-based approaches to obstructive lung diseases and their comorbidities |
1 Return
Return ID | App ID | Description | Archive Date |
2747 | 20915 | Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations | 3 Nov 2020 |